![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curry2f | Structured version Visualization version GIF version |
Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2f | ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6717 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐷 → 𝐹 Fn (𝐴 × 𝐵)) | |
2 | curry2.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
3 | 2 | curry2 8107 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
4 | 1, 3 | sylan 579 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
5 | fovcdm 7586 | . . . 4 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝑥𝐹𝐶) ∈ 𝐷) | |
6 | 5 | 3com23 1124 | . . 3 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝐶) ∈ 𝐷) |
7 | 6 | 3expa 1116 | . 2 ⊢ (((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝐶) ∈ 𝐷) |
8 | 4, 7 | fmpt3d 7121 | 1 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 {csn 4625 ↦ cmpt 5226 × cxp 5671 ◡ccnv 5672 ↾ cres 5675 ∘ ccom 5677 Fn wfn 6538 ⟶wf 6539 (class class class)co 7415 1st c1st 7986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-1st 7988 df-2nd 7989 |
This theorem is referenced by: curry2ima 32483 |
Copyright terms: Public domain | W3C validator |