![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem1 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 34909. In cvmliftlem15 34908, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇‘𝑀) is an even covering of 1st ‘(𝑇‘𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇‘𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
Ref | Expression |
---|---|
cvmliftlem1 | ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5696 | . . . . . 6 ⊢ Rel ({𝑗} × (𝑆‘𝑗)) | |
2 | 1 | rgenw 3062 | . . . . 5 ⊢ ∀𝑗 ∈ 𝐽 Rel ({𝑗} × (𝑆‘𝑗)) |
3 | reliun 5818 | . . . . 5 ⊢ (Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ ∀𝑗 ∈ 𝐽 Rel ({𝑗} × (𝑆‘𝑗))) | |
4 | 2, 3 | mpbir 230 | . . . 4 ⊢ Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) |
5 | cvmliftlem.t | . . . . . 6 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
7 | cvmliftlem1.m | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
8 | 6, 7 | ffvelcdmd 7095 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑇‘𝑀) ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
9 | 1st2nd 8043 | . . . 4 ⊢ ((Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ (𝑇‘𝑀) ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) → (𝑇‘𝑀) = 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉) | |
10 | 4, 8, 9 | sylancr 586 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑇‘𝑀) = 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉) |
11 | 10, 8 | eqeltrrd 2830 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
12 | fveq2 6897 | . . . 4 ⊢ (𝑗 = (1st ‘(𝑇‘𝑀)) → (𝑆‘𝑗) = (𝑆‘(1st ‘(𝑇‘𝑀)))) | |
13 | 12 | opeliunxp2 5841 | . . 3 ⊢ (〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ ((1st ‘(𝑇‘𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))))) |
14 | 13 | simprbi 496 | . 2 ⊢ (〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
15 | 11, 14 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {crab 3429 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∅c0 4323 𝒫 cpw 4603 {csn 4629 〈cop 4635 ∪ cuni 4908 ∪ ciun 4996 ↦ cmpt 5231 × cxp 5676 ◡ccnv 5677 ran crn 5679 ↾ cres 5680 “ cima 5681 Rel wrel 5683 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 1st c1st 7991 2nd c2nd 7992 0cc0 11139 1c1 11140 − cmin 11475 / cdiv 11902 ℕcn 12243 (,)cioo 13357 [,]cicc 13360 ...cfz 13517 ↾t crest 17402 topGenctg 17419 Cn ccn 23141 Homeochmeo 23670 IIcii 24808 CovMap ccvm 34865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-1st 7993 df-2nd 7994 |
This theorem is referenced by: cvmliftlem6 34900 cvmliftlem8 34902 cvmliftlem9 34903 |
Copyright terms: Public domain | W3C validator |