Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem1 Structured version   Visualization version   GIF version

Theorem cvmliftlem1 34895
Description: Lemma for cvmlift 34909. In cvmliftlem15 34908, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇𝑀) is an even covering of 1st ‘(𝑇𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
Assertion
Ref Expression
cvmliftlem1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem1
StepHypRef Expression
1 relxp 5696 . . . . . 6 Rel ({𝑗} × (𝑆𝑗))
21rgenw 3062 . . . . 5 𝑗𝐽 Rel ({𝑗} × (𝑆𝑗))
3 reliun 5818 . . . . 5 (Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ∀𝑗𝐽 Rel ({𝑗} × (𝑆𝑗)))
42, 3mpbir 230 . . . 4 Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗))
5 cvmliftlem.t . . . . . 6 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
65adantr 480 . . . . 5 ((𝜑𝜓) → 𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
7 cvmliftlem1.m . . . . 5 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
86, 7ffvelcdmd 7095 . . . 4 ((𝜑𝜓) → (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
9 1st2nd 8043 . . . 4 ((Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗))) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
104, 8, 9sylancr 586 . . 3 ((𝜑𝜓) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
1110, 8eqeltrrd 2830 . 2 ((𝜑𝜓) → ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
12 fveq2 6897 . . . 4 (𝑗 = (1st ‘(𝑇𝑀)) → (𝑆𝑗) = (𝑆‘(1st ‘(𝑇𝑀))))
1312opeliunxp2 5841 . . 3 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ((1st ‘(𝑇𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀)))))
1413simprbi 496 . 2 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
1511, 14syl 17 1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3058  {crab 3429  cdif 3944  cin 3946  wss 3947  c0 4323  𝒫 cpw 4603  {csn 4629  cop 4635   cuni 4908   ciun 4996  cmpt 5231   × cxp 5676  ccnv 5677  ran crn 5679  cres 5680  cima 5681  Rel wrel 5683  wf 6544  cfv 6548  (class class class)co 7420  1st c1st 7991  2nd c2nd 7992  0cc0 11139  1c1 11140  cmin 11475   / cdiv 11902  cn 12243  (,)cioo 13357  [,]cicc 13360  ...cfz 13517  t crest 17402  topGenctg 17419   Cn ccn 23141  Homeochmeo 23670  IIcii 24808   CovMap ccvm 34865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-1st 7993  df-2nd 7994
This theorem is referenced by:  cvmliftlem6  34900  cvmliftlem8  34902  cvmliftlem9  34903
  Copyright terms: Public domain W3C validator
OSZAR »