![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotps | Structured version Visualization version GIF version |
Description: Lemma for dath 39241. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalemrotps.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalemrotps | ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | 1 | dalemccea 39188 | . . . 4 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
3 | 1 | dalemddea 39189 | . . . 4 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
4 | 2, 3 | jca 510 | . . 3 ⊢ (𝜓 → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
5 | 4 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
6 | 1 | dalem-ccly 39190 | . . . 4 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
7 | 6 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑌) |
8 | dalemrotps.y | . . . . . 6 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
9 | dalem.ph | . . . . . . 7 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
10 | dalem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
11 | dalem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
12 | 9, 10, 11 | dalemqrprot 39153 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
13 | 8, 12 | eqtr4id 2787 | . . . . 5 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
14 | 13 | breq2d 5164 | . . . 4 ⊢ (𝜑 → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
15 | 14 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
16 | 7, 15 | mtbid 323 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
17 | 1 | dalemccnedd 39192 | . . . . 5 ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
18 | 17 | necomd 2993 | . . . 4 ⊢ (𝜓 → 𝑑 ≠ 𝑐) |
19 | 18 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑑 ≠ 𝑐) |
20 | 1 | dalem-ddly 39191 | . . . . 5 ⊢ (𝜓 → ¬ 𝑑 ≤ 𝑌) |
21 | 20 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑌) |
22 | 13 | breq2d 5164 | . . . . 5 ⊢ (𝜑 → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
23 | 22 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
24 | 21, 23 | mtbid 323 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
25 | 1 | dalemclccjdd 39193 | . . . 4 ⊢ (𝜓 → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
26 | 25 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
27 | 19, 24, 26 | 3jca 1125 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
28 | 5, 16, 27 | 3jca 1125 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 lecple 17247 joincjn 18310 Atomscatm 38767 HLchlt 38854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-proset 18294 df-poset 18312 df-lub 18345 df-glb 18346 df-join 18347 df-meet 18348 df-lat 18431 df-ats 38771 df-atl 38802 df-cvlat 38826 df-hlat 38855 |
This theorem is referenced by: dalem29 39206 dalem30 39207 dalem31N 39208 dalem32 39209 dalem33 39210 dalem34 39211 dalem35 39212 dalem36 39213 dalem37 39214 dalem40 39217 dalem46 39223 dalem47 39224 dalem49 39226 dalem50 39227 dalem58 39235 dalem59 39236 |
Copyright terms: Public domain | W3C validator |