MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12r Structured version   Visualization version   GIF version

Theorem dfac12r 10170
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 10173 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12r (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)

Proof of Theorem dfac12r
Dummy variables 𝑎 𝑏 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9817 . . . 4 (𝑦 (𝑅1 “ On) ↔ ∃𝑧 ∈ On 𝑦 ∈ (𝑅1‘suc 𝑧))
2 harcl 9583 . . . . . . . . 9 (har‘(𝑅1𝑧)) ∈ On
3 pweq 4617 . . . . . . . . . . 11 (𝑥 = (har‘(𝑅1𝑧)) → 𝒫 𝑥 = 𝒫 (har‘(𝑅1𝑧)))
43eleq1d 2814 . . . . . . . . . 10 (𝑥 = (har‘(𝑅1𝑧)) → (𝒫 𝑥 ∈ dom card ↔ 𝒫 (har‘(𝑅1𝑧)) ∈ dom card))
54rspcv 3605 . . . . . . . . 9 ((har‘(𝑅1𝑧)) ∈ On → (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (har‘(𝑅1𝑧)) ∈ dom card))
62, 5ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (har‘(𝑅1𝑧)) ∈ dom card)
7 cardid2 9977 . . . . . . . 8 (𝒫 (har‘(𝑅1𝑧)) ∈ dom card → (card‘𝒫 (har‘(𝑅1𝑧))) ≈ 𝒫 (har‘(𝑅1𝑧)))
8 ensym 9024 . . . . . . . 8 ((card‘𝒫 (har‘(𝑅1𝑧))) ≈ 𝒫 (har‘(𝑅1𝑧)) → 𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))))
9 bren 8974 . . . . . . . . 9 (𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))) ↔ ∃𝑓 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))))
10 simpr 484 . . . . . . . . . . . 12 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑧 ∈ On)
11 f1of1 6838 . . . . . . . . . . . . . 14 (𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))))
1211adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))))
13 cardon 9968 . . . . . . . . . . . . . 14 (card‘𝒫 (har‘(𝑅1𝑧))) ∈ On
1413onssi 7841 . . . . . . . . . . . . 13 (card‘𝒫 (har‘(𝑅1𝑧))) ⊆ On
15 f1ss 6799 . . . . . . . . . . . . 13 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ (card‘𝒫 (har‘(𝑅1𝑧))) ⊆ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→On)
1612, 14, 15sylancl 585 . . . . . . . . . . . 12 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1→On)
17 fveq2 6897 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (rank‘𝑦) = (rank‘𝑏))
1817oveq2d 7436 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (suc ran ran 𝑥 ·o (rank‘𝑦)) = (suc ran ran 𝑥 ·o (rank‘𝑏)))
19 suceq 6435 . . . . . . . . . . . . . . . . . . . . 21 ((rank‘𝑦) = (rank‘𝑏) → suc (rank‘𝑦) = suc (rank‘𝑏))
2017, 19syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → suc (rank‘𝑦) = suc (rank‘𝑏))
2120fveq2d 6901 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (𝑥‘suc (rank‘𝑦)) = (𝑥‘suc (rank‘𝑏)))
22 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏𝑦 = 𝑏)
2321, 22fveq12d 6904 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((𝑥‘suc (rank‘𝑦))‘𝑦) = ((𝑥‘suc (rank‘𝑏))‘𝑏))
2418, 23oveq12d 7438 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)) = ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)))
25 imaeq2 6059 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦) = ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))
2625fveq2d 6901 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)) = (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)))
2724, 26ifeq12d 4550 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))) = if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))))
2827cbvmptv 5261 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑏 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))))
29 dmeq 5906 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → dom 𝑥 = dom 𝑎)
3029fveq2d 6901 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑅1‘dom 𝑥) = (𝑅1‘dom 𝑎))
3129unieqd 4921 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 dom 𝑥 = dom 𝑎)
3229, 31eqeq12d 2744 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (dom 𝑥 = dom 𝑥 ↔ dom 𝑎 = dom 𝑎))
33 rneq 5938 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → ran 𝑥 = ran 𝑎)
3433unieqd 4921 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 ran 𝑥 = ran 𝑎)
3534rneqd 5940 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → ran ran 𝑥 = ran ran 𝑎)
3635unieqd 4921 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 ran ran 𝑥 = ran ran 𝑎)
37 suceq 6435 . . . . . . . . . . . . . . . . . . . 20 ( ran ran 𝑥 = ran ran 𝑎 → suc ran ran 𝑥 = suc ran ran 𝑎)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → suc ran ran 𝑥 = suc ran ran 𝑎)
3938oveq1d 7435 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (suc ran ran 𝑥 ·o (rank‘𝑏)) = (suc ran ran 𝑎 ·o (rank‘𝑏)))
40 fveq1 6896 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥‘suc (rank‘𝑏)) = (𝑎‘suc (rank‘𝑏)))
4140fveq1d 6899 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥‘suc (rank‘𝑏))‘𝑏) = ((𝑎‘suc (rank‘𝑏))‘𝑏))
4239, 41oveq12d 7438 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)) = ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)))
43 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑎𝑥 = 𝑎)
4443, 31fveq12d 6904 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → (𝑥 dom 𝑥) = (𝑎 dom 𝑎))
4544rneqd 5940 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → ran (𝑥 dom 𝑥) = ran (𝑎 dom 𝑎))
46 oieq2 9537 . . . . . . . . . . . . . . . . . . . . . 22 (ran (𝑥 dom 𝑥) = ran (𝑎 dom 𝑎) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4847cnveqd 5878 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran (𝑎 dom 𝑎)))
4948, 44coeq12d 5867 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) = (OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)))
5049imaeq1d 6062 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏) = ((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))
5150fveq2d 6901 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)) = (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))
5232, 42, 51ifbieq12d 4557 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏))) = if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))
5330, 52mpteq12dv 5239 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑏 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑏)) +o ((𝑥‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑏)))) = (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
5428, 53eqtrid 2780 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
5554cbvmptv 5261 . . . . . . . . . . . . 13 (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))
56 recseq 8395 . . . . . . . . . . . . 13 ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))) → recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))) = recs((𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏)))))))
5755, 56ax-mp 5 . . . . . . . . . . . 12 recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝑓‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))) = recs((𝑎 ∈ V ↦ (𝑏 ∈ (𝑅1‘dom 𝑎) ↦ if(dom 𝑎 = dom 𝑎, ((suc ran ran 𝑎 ·o (rank‘𝑏)) +o ((𝑎‘suc (rank‘𝑏))‘𝑏)), (𝑓‘((OrdIso( E , ran (𝑎 dom 𝑎)) ∘ (𝑎 dom 𝑎)) “ 𝑏))))))
5810, 16, 57dfac12lem3 10169 . . . . . . . . . . 11 ((𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) ∧ 𝑧 ∈ On) → (𝑅1𝑧) ∈ dom card)
5958ex 412 . . . . . . . . . 10 (𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
6059exlimiv 1926 . . . . . . . . 9 (∃𝑓 𝑓:𝒫 (har‘(𝑅1𝑧))–1-1-onto→(card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
619, 60sylbi 216 . . . . . . . 8 (𝒫 (har‘(𝑅1𝑧)) ≈ (card‘𝒫 (har‘(𝑅1𝑧))) → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
626, 7, 8, 614syl 19 . . . . . . 7 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑧 ∈ On → (𝑅1𝑧) ∈ dom card))
6362imp 406 . . . . . 6 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑅1𝑧) ∈ dom card)
64 r1suc 9794 . . . . . . . . 9 (𝑧 ∈ On → (𝑅1‘suc 𝑧) = 𝒫 (𝑅1𝑧))
6564adantl 481 . . . . . . . 8 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑅1‘suc 𝑧) = 𝒫 (𝑅1𝑧))
6665eleq2d 2815 . . . . . . 7 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) ↔ 𝑦 ∈ 𝒫 (𝑅1𝑧)))
67 elpwi 4610 . . . . . . 7 (𝑦 ∈ 𝒫 (𝑅1𝑧) → 𝑦 ⊆ (𝑅1𝑧))
6866, 67biimtrdi 252 . . . . . 6 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ⊆ (𝑅1𝑧)))
69 ssnum 10063 . . . . . 6 (((𝑅1𝑧) ∈ dom card ∧ 𝑦 ⊆ (𝑅1𝑧)) → 𝑦 ∈ dom card)
7063, 68, 69syl6an 683 . . . . 5 ((∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On) → (𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ∈ dom card))
7170rexlimdva 3152 . . . 4 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (∃𝑧 ∈ On 𝑦 ∈ (𝑅1‘suc 𝑧) → 𝑦 ∈ dom card))
721, 71biimtrid 241 . . 3 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑦 (𝑅1 “ On) → 𝑦 ∈ dom card))
7372ssrdv 3986 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → (𝑅1 “ On) ⊆ dom card)
74 onwf 9854 . . . . . 6 On ⊆ (𝑅1 “ On)
7574sseli 3976 . . . . 5 (𝑥 ∈ On → 𝑥 (𝑅1 “ On))
76 pwwf 9831 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
7775, 76sylib 217 . . . 4 (𝑥 ∈ On → 𝒫 𝑥 (𝑅1 “ On))
78 ssel 3973 . . . 4 ( (𝑅1 “ On) ⊆ dom card → (𝒫 𝑥 (𝑅1 “ On) → 𝒫 𝑥 ∈ dom card))
7977, 78syl5 34 . . 3 ( (𝑅1 “ On) ⊆ dom card → (𝑥 ∈ On → 𝒫 𝑥 ∈ dom card))
8079ralrimiv 3142 . 2 ( (𝑅1 “ On) ⊆ dom card → ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
8173, 80impbii 208 1 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wral 3058  wrex 3067  Vcvv 3471  wss 3947  ifcif 4529  𝒫 cpw 4603   cuni 4908   class class class wbr 5148  cmpt 5231   E cep 5581  ccnv 5677  dom cdm 5678  ran crn 5679  cima 5681  ccom 5682  Oncon0 6369  suc csuc 6371  1-1wf1 6545  1-1-ontowf1o 6547  cfv 6548  (class class class)co 7420  recscrecs 8391   +o coa 8484   ·o comu 8485  cen 8961  OrdIsocoi 9533  harchar 9580  𝑅1cr1 9786  rankcrnk 9787  cardccrd 9959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-oadd 8491  df-omul 8492  df-er 8725  df-en 8965  df-dom 8966  df-oi 9534  df-har 9581  df-r1 9788  df-rank 9789  df-card 9963
This theorem is referenced by:  dfac12a  10172
  Copyright terms: Public domain W3C validator
OSZAR »