MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfimafn Structured version   Visualization version   GIF version

Theorem dfimafn 6961
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem dfimafn
StepHypRef Expression
1 dfima2 6065 . 2 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
2 ssel 3973 . . . . . 6 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
3 funbrfvb 6952 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
43ex 412 . . . . . 6 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)))
52, 4syl9r 78 . . . . 5 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))))
65imp31 417 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
76rexbidva 3173 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐴 𝑥𝐹𝑦))
87abbidv 2797 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦})
91, 8eqtr4id 2787 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {cab 2705  wrex 3067  wss 3947   class class class wbr 5148  dom cdm 5678  cima 5681  Fun wfun 6542  cfv 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556
This theorem is referenced by:  dfimafn2  6962  fvelimab  6971  cshimadifsn  14813  cshimadifsn0  14814  ushgredgedg  29055  ushgredgedgloop  29057  curry2ima  32501  intimafv  32503  fnrelpredd  34712  poimirlem26  37119  poimirlem27  37120  f1oresf1o  46670  imasetpreimafvbijlemfo  46745
  Copyright terms: Public domain W3C validator
OSZAR »