![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foelcdmi | Structured version Visualization version GIF version |
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.) |
Ref | Expression |
---|---|
foelcdmi | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6814 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
2 | 1 | eleq2d 2815 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ ran 𝐹 ↔ 𝑌 ∈ 𝐵)) |
3 | fofn 6813 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
4 | fvelrnb 6959 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) |
6 | 2, 5 | bitr3d 281 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) |
7 | 6 | biimpa 476 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 ran crn 5679 Fn wfn 6543 –onto→wfo 6546 ‘cfv 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fo 6554 df-fv 6556 |
This theorem is referenced by: mhmid 19019 mhmmnd 19020 ghmgrp 19022 symgmov2 19342 ghmcmn 19786 imasabl 19831 founiiun 44552 founiiun0 44563 sge0f1o 45770 isomenndlem 45918 ovnsubaddlem1 45958 f1oresf1o2 46671 grimuhgr 47176 grimcnv 47177 |
Copyright terms: Public domain | W3C validator |