MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjen Structured version   Visualization version   GIF version

Theorem disjen 9152
Description: A stronger form of pwuninel 8274. We can use pwuninel 8274, 2pwuninel 9150 to create one or two sets disjoint from a given set 𝐴, but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set 𝐵 we can construct a set 𝑥 that is equinumerous to it and disjoint from 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjen ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))

Proof of Theorem disjen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1st2nd2 8026 . . . . . . . 8 (𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
21ad2antll 728 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
3 simprl 770 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → 𝑥𝐴)
42, 3eqeltrrd 2830 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
5 fvex 6904 . . . . . . 7 (1st𝑥) ∈ V
6 fvex 6904 . . . . . . 7 (2nd𝑥) ∈ V
75, 6opelrn 5939 . . . . . 6 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴 → (2nd𝑥) ∈ ran 𝐴)
84, 7syl 17 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) ∈ ran 𝐴)
9 pwuninel 8274 . . . . . 6 ¬ 𝒫 ran 𝐴 ∈ ran 𝐴
10 xp2nd 8020 . . . . . . . . 9 (𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}) → (2nd𝑥) ∈ {𝒫 ran 𝐴})
1110ad2antll 728 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) ∈ {𝒫 ran 𝐴})
12 elsni 4641 . . . . . . . 8 ((2nd𝑥) ∈ {𝒫 ran 𝐴} → (2nd𝑥) = 𝒫 ran 𝐴)
1311, 12syl 17 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) = 𝒫 ran 𝐴)
1413eleq1d 2814 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ((2nd𝑥) ∈ ran 𝐴 ↔ 𝒫 ran 𝐴 ∈ ran 𝐴))
159, 14mtbiri 327 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ¬ (2nd𝑥) ∈ ran 𝐴)
168, 15pm2.65da 816 . . . 4 ((𝐴𝑉𝐵𝑊) → ¬ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴})))
17 elin 3961 . . . 4 (𝑥 ∈ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) ↔ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴})))
1816, 17sylnibr 329 . . 3 ((𝐴𝑉𝐵𝑊) → ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})))
1918eq0rdv 4400 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅)
20 simpr 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
21 rnexg 7904 . . . . 5 (𝐴𝑉 → ran 𝐴 ∈ V)
2221adantr 480 . . . 4 ((𝐴𝑉𝐵𝑊) → ran 𝐴 ∈ V)
23 uniexg 7739 . . . 4 (ran 𝐴 ∈ V → ran 𝐴 ∈ V)
24 pwexg 5372 . . . 4 ( ran 𝐴 ∈ V → 𝒫 ran 𝐴 ∈ V)
2522, 23, 243syl 18 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 ran 𝐴 ∈ V)
26 xpsneng 9074 . . 3 ((𝐵𝑊 ∧ 𝒫 ran 𝐴 ∈ V) → (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)
2720, 25, 26syl2anc 583 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)
2819, 27jca 511 1 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  cin 3944  c0 4318  𝒫 cpw 4598  {csn 4624  cop 4630   cuni 4903   class class class wbr 5142   × cxp 5670  ran crn 5673  cfv 6542  1st c1st 7985  2nd c2nd 7986  cen 8954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1st 7987  df-2nd 7988  df-en 8958
This theorem is referenced by:  disjenex  9153  domss2  9154
  Copyright terms: Public domain W3C validator
OSZAR »