Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmcoels Structured version   Visualization version   GIF version

Theorem dmcoels 37933
Description: The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
dmcoels dom ∼ 𝐴 = 𝐴

Proof of Theorem dmcoels
StepHypRef Expression
1 df-coels 37888 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
21dmeqi 5909 . 2 dom ∼ 𝐴 = dom ≀ ( E ↾ 𝐴)
3 dm1cosscnvepres 37932 . 2 dom ≀ ( E ↾ 𝐴) = 𝐴
42, 3eqtri 2755 1 dom ∼ 𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   cuni 4910   E cep 5583  ccnv 5679  dom cdm 5680  cres 5682  ccoss 37653  ccoels 37654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-eprel 5584  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-coss 37887  df-coels 37888
This theorem is referenced by:  dmqscoelseq  38137
  Copyright terms: Public domain W3C validator
OSZAR »