![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoels | Structured version Visualization version GIF version |
Description: The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
dmcoels | ⊢ dom ∼ 𝐴 = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coels 37888 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
2 | 1 | dmeqi 5909 | . 2 ⊢ dom ∼ 𝐴 = dom ≀ (◡ E ↾ 𝐴) |
3 | dm1cosscnvepres 37932 | . 2 ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 | |
4 | 2, 3 | eqtri 2755 | 1 ⊢ dom ∼ 𝐴 = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cuni 4910 E cep 5583 ◡ccnv 5679 dom cdm 5680 ↾ cres 5682 ≀ ccoss 37653 ∼ ccoels 37654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-eprel 5584 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-coss 37887 df-coels 37888 |
This theorem is referenced by: dmqscoelseq 38137 |
Copyright terms: Public domain | W3C validator |