![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmqscoelseq | Structured version Visualization version GIF version |
Description: Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
dmqscoelseq | ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoels 37961 | . . 3 ⊢ dom ∼ 𝐴 = ∪ 𝐴 | |
2 | 1 | qseq1i 37794 | . 2 ⊢ (dom ∼ 𝐴 / ∼ 𝐴) = (∪ 𝐴 / ∼ 𝐴) |
3 | 2 | eqeq1i 2733 | 1 ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∪ cuni 4912 dom cdm 5682 / cqs 8730 ∼ ccoels 37682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-eprel 5586 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-qs 8737 df-coss 37915 df-coels 37916 |
This theorem is referenced by: dmqs1cosscnvepreseq 38166 dfcomember3 38178 |
Copyright terms: Public domain | W3C validator |