Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqscoelseq Structured version   Visualization version   GIF version

Theorem dmqscoelseq 38165
Description: Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
dmqscoelseq ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)

Proof of Theorem dmqscoelseq
StepHypRef Expression
1 dmcoels 37961 . . 3 dom ∼ 𝐴 = 𝐴
21qseq1i 37794 . 2 (dom ∼ 𝐴 /𝐴) = ( 𝐴 /𝐴)
32eqeq1i 2733 1 ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533   cuni 4912  dom cdm 5682   / cqs 8730  ccoels 37682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-eprel 5586  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-qs 8737  df-coss 37915  df-coels 37916
This theorem is referenced by:  dmqs1cosscnvepreseq  38166  dfcomember3  38178
  Copyright terms: Public domain W3C validator
OSZAR »