![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domwdom | Structured version Visualization version GIF version |
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
domwdom | ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqne 2944 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
3 | reldom 8963 | . . . . . . . . 9 ⊢ Rel ≼ | |
4 | 3 | brrelex1i 5728 | . . . . . . . 8 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
5 | 0sdomg 9122 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑋 ≼ 𝑌 → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
8 | 2, 7 | mpbird 257 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋) |
9 | simpl 482 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≼ 𝑌) | |
10 | fodomr 9146 | . . . . 5 ⊢ ((∅ ≺ 𝑋 ∧ 𝑋 ≼ 𝑌) → ∃𝑦 𝑦:𝑌–onto→𝑋) | |
11 | 8, 9, 10 | syl2anc 583 | . . . 4 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌–onto→𝑋) |
12 | 11 | ex 412 | . . 3 ⊢ (𝑋 ≼ 𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌–onto→𝑋)) |
13 | 12 | orrd 862 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋)) |
14 | 3 | brrelex2i 5729 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
15 | brwdom 9584 | . . 3 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) |
17 | 13, 16 | mpbird 257 | 1 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2936 Vcvv 3470 ∅c0 4318 class class class wbr 5142 –onto→wfo 6540 ≼ cdom 8955 ≺ csdm 8956 ≼* cwdom 9581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-en 8958 df-dom 8959 df-sdom 8960 df-wdom 9582 |
This theorem is referenced by: wdomen1 9593 wdomen2 9594 wdom2d 9597 wdomima2g 9603 unxpwdom2 9605 unxpwdom 9606 harwdom 9608 wdomfil 10078 wdomnumr 10081 pwdjudom 10233 hsmexlem1 10443 hsmexlem4 10446 |
Copyright terms: Public domain | W3C validator |