MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf2 Structured version   Visualization version   GIF version

Theorem dprdf2 19964
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprdf2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))

Proof of Theorem dprdf2
StepHypRef Expression
1 dprdcntz.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dprdf 19963 . . 3 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
31, 2syl 17 . 2 (𝜑𝑆:dom 𝑆⟶(SubGrp‘𝐺))
4 dprdcntz.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
54feq2d 6708 . 2 (𝜑 → (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
63, 5mpbid 231 1 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534   class class class wbr 5148  dom cdm 5678  wf 6544  cfv 6548  SubGrpcsubg 19075   DProd cdprd 19950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-ixp 8917  df-dprd 19952
This theorem is referenced by:  dprdff  19969  dprdfid  19974  dprdfinv  19976  dprdfadd  19977  dprdfeq0  19979  dprdres  19985  dprdss  19986  dprdf1o  19989  dprdf1  19990  subgdprd  19992  dmdprdsplitlem  19994  dprdcntz2  19995  dpjlem  20008  dpjcntz  20009  dpjdisj  20010  dpjlsm  20011  dpjf  20014  dpjidcl  20015  dpjlid  20018  dpjghm  20020  dpjghm2  20021  ablfac1c  20028  ablfac1eulem  20029  ablfac1eu  20030  ablfaclem2  20043  ablfaclem3  20044  dchrptlem3  27212
  Copyright terms: Public domain W3C validator
OSZAR »