![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfzolem1 | Structured version Visualization version GIF version |
Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elfzolem1 | ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀..^𝑁)) | |
2 | elfzoel2 13661 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
3 | simpl 481 | . . . 4 ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀..^𝑁)) | |
4 | fzoval 13663 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
5 | 4 | adantl 480 | . . . 4 ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
6 | 3, 5 | eleqtrd 2827 | . . 3 ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀...(𝑁 − 1))) |
7 | elfzle2 13535 | . . 3 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ≤ (𝑁 − 1)) |
9 | 1, 2, 8 | syl2anc 582 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 (class class class)co 7414 1c1 11137 ≤ cle 11277 − cmin 11472 ℤcz 12586 ...cfz 13514 ..^cfzo 13657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7989 df-2nd 7990 df-neg 11475 df-z 12587 df-uz 12851 df-fz 13515 df-fzo 13658 |
This theorem is referenced by: iundjiun 45883 |
Copyright terms: Public domain | W3C validator |