MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnoOLD Structured version   Visualization version   GIF version

Theorem elnoOLD 27676
Description: Obsolete version of elno 27675 as of 5-Jun-2025. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elnoOLD (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elnoOLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝐴 No 𝐴 ∈ V)
2 fex 7243 . . . 4 ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ On) → 𝐴 ∈ V)
32ancoms 457 . . 3 ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → 𝐴 ∈ V)
43rexlimiva 3137 . 2 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V)
5 feq1 6709 . . . 4 (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o}))
65rexbidv 3169 . . 3 (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
7 df-no 27672 . . 3 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
86, 7elab2g 3668 . 2 (𝐴 ∈ V → (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
91, 4, 8pm5.21nii 377 1 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  wrex 3060  Vcvv 3462  {cpr 4635  Oncon0 6376  wf 6550  1oc1o 8489  2oc2o 8490   No csur 27669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-no 27672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »