MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elocv Structured version   Visualization version   GIF version

Theorem elocv 21594
Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
elocv (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊   𝑥, ,   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   (𝑥)

Proof of Theorem elocv
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6929 . . . . 5 (𝐴 ∈ ( 𝑆) → 𝑆 ∈ dom )
2 n0i 4330 . . . . . . . . 9 (𝐴 ∈ ( 𝑆) → ¬ ( 𝑆) = ∅)
3 ocvfval.o . . . . . . . . . . . 12 = (ocv‘𝑊)
4 fvprc 6884 . . . . . . . . . . . 12 𝑊 ∈ V → (ocv‘𝑊) = ∅)
53, 4eqtrid 2780 . . . . . . . . . . 11 𝑊 ∈ V → = ∅)
65fveq1d 6894 . . . . . . . . . 10 𝑊 ∈ V → ( 𝑆) = (∅‘𝑆))
7 0fv 6936 . . . . . . . . . 10 (∅‘𝑆) = ∅
86, 7eqtrdi 2784 . . . . . . . . 9 𝑊 ∈ V → ( 𝑆) = ∅)
92, 8nsyl2 141 . . . . . . . 8 (𝐴 ∈ ( 𝑆) → 𝑊 ∈ V)
10 ocvfval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
11 ocvfval.i . . . . . . . . 9 , = (·𝑖𝑊)
12 ocvfval.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
13 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1410, 11, 12, 13, 3ocvfval 21592 . . . . . . . 8 (𝑊 ∈ V → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
159, 14syl 17 . . . . . . 7 (𝐴 ∈ ( 𝑆) → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
1615dmeqd 5903 . . . . . 6 (𝐴 ∈ ( 𝑆) → dom = dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
1710fvexi 6906 . . . . . . . 8 𝑉 ∈ V
1817rabex 5329 . . . . . . 7 {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 } ∈ V
19 eqid 2728 . . . . . . 7 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 })
2018, 19dmmpti 6694 . . . . . 6 dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }) = 𝒫 𝑉
2116, 20eqtrdi 2784 . . . . 5 (𝐴 ∈ ( 𝑆) → dom = 𝒫 𝑉)
221, 21eleqtrd 2831 . . . 4 (𝐴 ∈ ( 𝑆) → 𝑆 ∈ 𝒫 𝑉)
2322elpwid 4608 . . 3 (𝐴 ∈ ( 𝑆) → 𝑆𝑉)
2410, 11, 12, 13, 3ocvval 21593 . . . . 5 (𝑆𝑉 → ( 𝑆) = {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 })
2524eleq2d 2815 . . . 4 (𝑆𝑉 → (𝐴 ∈ ( 𝑆) ↔ 𝐴 ∈ {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 }))
26 oveq1 7422 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 , 𝑥) = (𝐴 , 𝑥))
2726eqeq1d 2730 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 , 𝑥) = 0 ↔ (𝐴 , 𝑥) = 0 ))
2827ralbidv 3173 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑆 (𝑦 , 𝑥) = 0 ↔ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
2928elrab 3681 . . . 4 (𝐴 ∈ {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 } ↔ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
3025, 29bitrdi 287 . . 3 (𝑆𝑉 → (𝐴 ∈ ( 𝑆) ↔ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
3123, 30biadanii 821 . 2 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
32 3anass 1093 . 2 ((𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ) ↔ (𝑆𝑉 ∧ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
3331, 32bitr4i 278 1 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  {crab 3428  Vcvv 3470  wss 3945  c0 4319  𝒫 cpw 4599  cmpt 5226  dom cdm 5673  cfv 6543  (class class class)co 7415  Basecbs 17174  Scalarcsca 17230  ·𝑖cip 17232  0gc0g 17415  ocvcocv 21586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7418  df-ocv 21589
This theorem is referenced by:  ocvi  21595  ocvss  21596  ocvocv  21597  ocvlss  21598  ocv2ss  21599  unocv  21606  iunocv  21607  obselocv  21656  clsocv  25172  pjthlem2  25360
  Copyright terms: Public domain W3C validator
OSZAR »