MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreal2 Structured version   Visualization version   GIF version

Theorem elreal2 11149
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elreal2 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))

Proof of Theorem elreal2
StepHypRef Expression
1 df-r 11142 . . 3 ℝ = (R × {0R})
21eleq2i 2821 . 2 (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R}))
3 xp1st 8019 . . . 4 (𝐴 ∈ (R × {0R}) → (1st𝐴) ∈ R)
4 1st2nd2 8026 . . . . 5 (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5 xp2nd 8020 . . . . . . 7 (𝐴 ∈ (R × {0R}) → (2nd𝐴) ∈ {0R})
6 elsni 4641 . . . . . . 7 ((2nd𝐴) ∈ {0R} → (2nd𝐴) = 0R)
75, 6syl 17 . . . . . 6 (𝐴 ∈ (R × {0R}) → (2nd𝐴) = 0R)
87opeq2d 4876 . . . . 5 (𝐴 ∈ (R × {0R}) → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐴), 0R⟩)
94, 8eqtrd 2768 . . . 4 (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st𝐴), 0R⟩)
103, 9jca 511 . . 3 (𝐴 ∈ (R × {0R}) → ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
11 eleq1 2817 . . . . 5 (𝐴 = ⟨(1st𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ ⟨(1st𝐴), 0R⟩ ∈ (R × {0R})))
12 0r 11097 . . . . . . . 8 0RR
1312elexi 3490 . . . . . . 7 0R ∈ V
1413snid 4660 . . . . . 6 0R ∈ {0R}
15 opelxp 5708 . . . . . 6 (⟨(1st𝐴), 0R⟩ ∈ (R × {0R}) ↔ ((1st𝐴) ∈ R ∧ 0R ∈ {0R}))
1614, 15mpbiran2 709 . . . . 5 (⟨(1st𝐴), 0R⟩ ∈ (R × {0R}) ↔ (1st𝐴) ∈ R)
1711, 16bitrdi 287 . . . 4 (𝐴 = ⟨(1st𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ (1st𝐴) ∈ R))
1817biimparc 479 . . 3 (((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩) → 𝐴 ∈ (R × {0R}))
1910, 18impbii 208 . 2 (𝐴 ∈ (R × {0R}) ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
202, 19bitri 275 1 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  {csn 4624  cop 4630   × cxp 5670  cfv 6542  1st c1st 7985  2nd c2nd 7986  Rcnr 10882  0Rc0r 10883  cr 11131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8718  df-ec 8720  df-qs 8724  df-ni 10889  df-pli 10890  df-mi 10891  df-lti 10892  df-plpq 10925  df-mpq 10926  df-ltpq 10927  df-enq 10928  df-nq 10929  df-erq 10930  df-plq 10931  df-mq 10932  df-1nq 10933  df-rq 10934  df-ltnq 10935  df-np 10998  df-1p 10999  df-enr 11072  df-nr 11073  df-0r 11077  df-r 11142
This theorem is referenced by:  ltresr2  11158  axrnegex  11179  axpre-sup  11186
  Copyright terms: Public domain W3C validator
OSZAR »