![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmptd | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elrnmptd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmptd.x | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
elrnmptd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
elrnmptd | ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmptd.x | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | |
2 | elrnmptd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | elrnmptd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmpt 5952 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
6 | 1, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 ↦ cmpt 5225 ran crn 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-mpt 5226 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: pwfilem 9195 nsgmgc 33116 nsgqusf1olem1 33117 evls1maprnss 33365 algextdeglem4 33382 zarclsun 33465 rnmptssrn 44549 infnsuprnmpt 44620 supminfrnmpt 44821 supminfxrrnmpt 44847 sge0sup 45773 sge0resplit 45788 sge0xaddlem2 45816 sge0pnfmpt 45827 sge0reuz 45829 sge0reuzb 45830 hoidmvlelem2 45978 |
Copyright terms: Public domain | W3C validator |