MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirn2OLD Structured version   Visualization version   GIF version

Theorem elunirn2OLD 7263
Description: Obsolete version of elfvunirn 6929 as of 12-Jan-2025. (Contributed by Thierry Arnoux, 13-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elunirn2OLD ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → 𝐵 ran 𝐹)

Proof of Theorem elunirn2OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6934 . . . 4 (𝐵 ∈ (𝐹𝐴) → 𝐴 ∈ dom 𝐹)
2 fveq2 6897 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
32eleq2d 2815 . . . . 5 (𝑥 = 𝐴 → (𝐵 ∈ (𝐹𝑥) ↔ 𝐵 ∈ (𝐹𝐴)))
43rspcev 3609 . . . 4 ((𝐴 ∈ dom 𝐹𝐵 ∈ (𝐹𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
51, 4mpancom 687 . . 3 (𝐵 ∈ (𝐹𝐴) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
65adantl 481 . 2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
7 elunirn 7261 . . 3 (Fun 𝐹 → (𝐵 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥)))
87adantr 480 . 2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → (𝐵 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥)))
96, 8mpbird 257 1 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → 𝐵 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wrex 3067   cuni 4908  dom cdm 5678  ran crn 5679  Fun wfun 6542  cfv 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »