![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunirn2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of elfvunirn 6929 as of 12-Jan-2025. (Contributed by Thierry Arnoux, 13-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
elunirn2OLD | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → 𝐵 ∈ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6934 | . . . 4 ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐴 ∈ dom 𝐹) | |
2 | fveq2 6897 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
3 | 2 | eleq2d 2815 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ (𝐹‘𝑥) ↔ 𝐵 ∈ (𝐹‘𝐴))) |
4 | 3 | rspcev 3609 | . . . 4 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥)) |
5 | 1, 4 | mpancom 687 | . . 3 ⊢ (𝐵 ∈ (𝐹‘𝐴) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥)) |
6 | 5 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥)) |
7 | elunirn 7261 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥))) | |
8 | 7 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹‘𝑥))) |
9 | 6, 8 | mpbird 257 | 1 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → 𝐵 ∈ ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 ∪ cuni 4908 dom cdm 5678 ran crn 5679 Fun wfun 6542 ‘cfv 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-fv 6556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |