MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqelssd Structured version   Visualization version   GIF version

Theorem eqelssd 4001
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
eqelssd.1 (𝜑𝐴𝐵)
eqelssd.2 ((𝜑𝑥𝐵) → 𝑥𝐴)
Assertion
Ref Expression
eqelssd (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem eqelssd
StepHypRef Expression
1 eqelssd.1 . 2 (𝜑𝐴𝐵)
2 eqelssd.2 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐴)
32ex 412 . . 3 (𝜑 → (𝑥𝐵𝑥𝐴))
43ssrdv 3986 . 2 (𝜑𝐵𝐴)
51, 4eqssd 3997 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-in 3954  df-ss 3964
This theorem is referenced by:  wfrlem10OLD  8338  ordtypelem9  9549  ordtypelem10  9550  oismo  9563  prlem934  11056  phimullem  16747  prmreclem5  16888  psssdm2  18572  sylow3lem3  19583  ablfacrp  20022  isdrng2  20637  imadrhmcl  20684  fidomndrng  21260  pjfo  21648  obs2ss  21662  frlmsslsp  21729  mplbas2  21979  restfpw  23082  2ndcsep  23362  ptclsg  23518  trfg  23794  restutopopn  24142  unirnblps  24324  unirnbl  24325  clsocv  25177  rrxbasefi  25337  pjth  25366  opnmbllem  25529  dvidlem  25843  dvaddf  25872  dvmulf  25873  dvcof  25879  dvcj  25881  dvrec  25886  dvcnv  25908  dvcnvre  25951  ftc1cn  25977  ulmdv  26338  pserdv  26365  ppisval2  27036  noseqrdgfn  28178  nbupgruvtxres  29219  ply1degltdimlem  33316  dimkerim  33321  fedgmul  33325  reff  33440  dya2iocuni  33903  cvmsss2  34884  opnmbllem0  37129  ftc1cnnc  37165  lkrlsp  38574  cdleme50rnlem  40017  hdmaprnN  41337  hgmaprnN  41374  qsalrel  41731  kercvrlsm  42507  pwssplit4  42513  hbtlem5  42552  restuni3  44484  disjf1o  44564  unirnmapsn  44587  iunmapsn  44590  icoiccdif  44909  iccdificc  44924  lptioo2  45019  lptioo1  45020  qndenserrn  45687  intsaluni  45717  iundjiun  45848  meadjiunlem  45853  meaiininclem  45874  iunhoiioo  46064
  Copyright terms: Public domain W3C validator
OSZAR »