![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvcof | Structured version Visualization version GIF version |
Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvcof.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvcof.t | ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) |
dvcof.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvcof.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) |
dvcof.df | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
dvcof.dg | ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) |
Ref | Expression |
---|---|
dvcof | ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcof.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋⟶ℂ) |
3 | dvcof.df | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
4 | dvbsss 25824 | . . . . . 6 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
5 | 3, 4 | eqsstrrdi 4033 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑋 ⊆ 𝑆) |
7 | dvcof.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐺:𝑌⟶𝑋) |
9 | dvcof.dg | . . . . . 6 ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) | |
10 | dvbsss 25824 | . . . . . 6 ⊢ dom (𝑇 D 𝐺) ⊆ 𝑇 | |
11 | 9, 10 | eqsstrrdi 4033 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑇) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑌 ⊆ 𝑇) |
13 | dvcof.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ∈ {ℝ, ℂ}) |
15 | dvcof.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) | |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ∈ {ℝ, ℂ}) |
17 | 7 | ffvelcdmda 7088 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ 𝑋) |
18 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → dom (𝑆 D 𝐹) = 𝑋) |
19 | 17, 18 | eleqtrrd 2832 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥) ∈ dom (𝑆 D 𝐹)) |
20 | 9 | eleq2d 2815 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥 ∈ 𝑌)) |
21 | 20 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D 𝐺)) |
22 | 2, 6, 8, 12, 14, 16, 19, 21 | dvco 25872 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
23 | 22 | mpteq2dva 5242 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
24 | dvfg 25828 | . . . . 5 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) | |
25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ) |
26 | recnprss 25826 | . . . . . . . 8 ⊢ (𝑇 ∈ {ℝ, ℂ} → 𝑇 ⊆ ℂ) | |
27 | 15, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ ℂ) |
28 | fco 6741 | . . . . . . . 8 ⊢ ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌⟶𝑋) → (𝐹 ∘ 𝐺):𝑌⟶ℂ) | |
29 | 1, 7, 28 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝑌⟶ℂ) |
30 | 27, 29, 11 | dvbss 25823 | . . . . . 6 ⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) ⊆ 𝑌) |
31 | recnprss 25826 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
32 | 14, 31 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑆 ⊆ ℂ) |
33 | 16, 26 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑇 ⊆ ℂ) |
34 | dvfg 25828 | . . . . . . . . . 10 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
35 | ffun 6719 | . . . . . . . . . 10 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
36 | funfvbrb 7054 | . . . . . . . . . 10 ⊢ (Fun (𝑆 D 𝐹) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) | |
37 | 14, 34, 35, 36 | 4syl 19 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝐺‘𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
38 | 19, 37 | mpbid 231 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐺‘𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺‘𝑥))) |
39 | dvfg 25828 | . . . . . . . . . 10 ⊢ (𝑇 ∈ {ℝ, ℂ} → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) | |
40 | ffun 6719 | . . . . . . . . . 10 ⊢ ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺)) | |
41 | funfvbrb 7054 | . . . . . . . . . 10 ⊢ (Fun (𝑇 D 𝐺) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) | |
42 | 16, 39, 40, 41 | 4syl 19 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))) |
43 | 21, 42 | mpbid 231 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)) |
44 | eqid 2728 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
45 | 2, 6, 8, 12, 32, 33, 38, 43, 44 | dvcobr 25870 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥))) |
46 | reldv 25792 | . . . . . . . 8 ⊢ Rel (𝑇 D (𝐹 ∘ 𝐺)) | |
47 | 46 | releldmi 5944 | . . . . . . 7 ⊢ (𝑥(𝑇 D (𝐹 ∘ 𝐺))(((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
48 | 45, 47 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ dom (𝑇 D (𝐹 ∘ 𝐺))) |
49 | 30, 48 | eqelssd 3999 | . . . . 5 ⊢ (𝜑 → dom (𝑇 D (𝐹 ∘ 𝐺)) = 𝑌) |
50 | 49 | feq2d 6702 | . . . 4 ⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺)):dom (𝑇 D (𝐹 ∘ 𝐺))⟶ℂ ↔ (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ)) |
51 | 25, 50 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)):𝑌⟶ℂ) |
52 | 51 | feqmptd 6961 | . 2 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D (𝐹 ∘ 𝐺))‘𝑥))) |
53 | 15, 11 | ssexd 5318 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
54 | fvexd 6906 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑆 D 𝐹)‘(𝐺‘𝑥)) ∈ V) | |
55 | fvexd 6906 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝑇 D 𝐺)‘𝑥) ∈ V) | |
56 | 7 | feqmptd 6961 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑌 ↦ (𝐺‘𝑥))) |
57 | 13, 34 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
58 | 3 | feq2d 6702 | . . . . . 6 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
59 | 57, 58 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
60 | 59 | feqmptd 6961 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑦 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑦))) |
61 | fveq2 6891 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑥) → ((𝑆 D 𝐹)‘𝑦) = ((𝑆 D 𝐹)‘(𝐺‘𝑥))) | |
62 | 17, 56, 60, 61 | fmptco 7132 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘ 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑆 D 𝐹)‘(𝐺‘𝑥)))) |
63 | 15, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ) |
64 | 9 | feq2d 6702 | . . . . 5 ⊢ (𝜑 → ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ ↔ (𝑇 D 𝐺):𝑌⟶ℂ)) |
65 | 63, 64 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑇 D 𝐺):𝑌⟶ℂ) |
66 | 65 | feqmptd 6961 | . . 3 ⊢ (𝜑 → (𝑇 D 𝐺) = (𝑥 ∈ 𝑌 ↦ ((𝑇 D 𝐺)‘𝑥))) |
67 | 53, 54, 55, 62, 66 | offval2 7699 | . 2 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)) = (𝑥 ∈ 𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺‘𝑥)) · ((𝑇 D 𝐺)‘𝑥)))) |
68 | 23, 52, 67 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 {cpr 4626 class class class wbr 5142 ↦ cmpt 5225 dom cdm 5672 ∘ ccom 5676 Fun wfun 6536 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∘f cof 7677 ℂcc 11130 ℝcr 11131 · cmul 11137 TopOpenctopn 17396 ℂfldccnfld 21272 D cdv 25785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-icc 13357 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-lp 23033 df-perf 23034 df-cn 23124 df-cnp 23125 df-haus 23212 df-tx 23459 df-hmeo 23652 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-limc 25788 df-dv 25789 |
This theorem is referenced by: dvmptco 25897 dvsinax 45295 dvcosax 45308 |
Copyright terms: Public domain | W3C validator |