MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcof Structured version   Visualization version   GIF version

Theorem dvcof 25873
Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcof.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcof.t (𝜑𝑇 ∈ {ℝ, ℂ})
dvcof.f (𝜑𝐹:𝑋⟶ℂ)
dvcof.g (𝜑𝐺:𝑌𝑋)
dvcof.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvcof.dg (𝜑 → dom (𝑇 D 𝐺) = 𝑌)
Assertion
Ref Expression
dvcof (𝜑 → (𝑇 D (𝐹𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)))

Proof of Theorem dvcof
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcof.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 480 . . . 4 ((𝜑𝑥𝑌) → 𝐹:𝑋⟶ℂ)
3 dvcof.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
4 dvbsss 25824 . . . . . 6 dom (𝑆 D 𝐹) ⊆ 𝑆
53, 4eqsstrrdi 4033 . . . . 5 (𝜑𝑋𝑆)
65adantr 480 . . . 4 ((𝜑𝑥𝑌) → 𝑋𝑆)
7 dvcof.g . . . . 5 (𝜑𝐺:𝑌𝑋)
87adantr 480 . . . 4 ((𝜑𝑥𝑌) → 𝐺:𝑌𝑋)
9 dvcof.dg . . . . . 6 (𝜑 → dom (𝑇 D 𝐺) = 𝑌)
10 dvbsss 25824 . . . . . 6 dom (𝑇 D 𝐺) ⊆ 𝑇
119, 10eqsstrrdi 4033 . . . . 5 (𝜑𝑌𝑇)
1211adantr 480 . . . 4 ((𝜑𝑥𝑌) → 𝑌𝑇)
13 dvcof.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
1413adantr 480 . . . 4 ((𝜑𝑥𝑌) → 𝑆 ∈ {ℝ, ℂ})
15 dvcof.t . . . . 5 (𝜑𝑇 ∈ {ℝ, ℂ})
1615adantr 480 . . . 4 ((𝜑𝑥𝑌) → 𝑇 ∈ {ℝ, ℂ})
177ffvelcdmda 7088 . . . . 5 ((𝜑𝑥𝑌) → (𝐺𝑥) ∈ 𝑋)
183adantr 480 . . . . 5 ((𝜑𝑥𝑌) → dom (𝑆 D 𝐹) = 𝑋)
1917, 18eleqtrrd 2832 . . . 4 ((𝜑𝑥𝑌) → (𝐺𝑥) ∈ dom (𝑆 D 𝐹))
209eleq2d 2815 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥𝑌))
2120biimpar 477 . . . 4 ((𝜑𝑥𝑌) → 𝑥 ∈ dom (𝑇 D 𝐺))
222, 6, 8, 12, 14, 16, 19, 21dvco 25872 . . 3 ((𝜑𝑥𝑌) → ((𝑇 D (𝐹𝐺))‘𝑥) = (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)))
2322mpteq2dva 5242 . 2 (𝜑 → (𝑥𝑌 ↦ ((𝑇 D (𝐹𝐺))‘𝑥)) = (𝑥𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥))))
24 dvfg 25828 . . . . 5 (𝑇 ∈ {ℝ, ℂ} → (𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ)
2515, 24syl 17 . . . 4 (𝜑 → (𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ)
26 recnprss 25826 . . . . . . . 8 (𝑇 ∈ {ℝ, ℂ} → 𝑇 ⊆ ℂ)
2715, 26syl 17 . . . . . . 7 (𝜑𝑇 ⊆ ℂ)
28 fco 6741 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌𝑋) → (𝐹𝐺):𝑌⟶ℂ)
291, 7, 28syl2anc 583 . . . . . . 7 (𝜑 → (𝐹𝐺):𝑌⟶ℂ)
3027, 29, 11dvbss 25823 . . . . . 6 (𝜑 → dom (𝑇 D (𝐹𝐺)) ⊆ 𝑌)
31 recnprss 25826 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3214, 31syl 17 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑆 ⊆ ℂ)
3316, 26syl 17 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑇 ⊆ ℂ)
34 dvfg 25828 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
35 ffun 6719 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
36 funfvbrb 7054 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → ((𝐺𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥))))
3714, 34, 35, 364syl 19 . . . . . . . . 9 ((𝜑𝑥𝑌) → ((𝐺𝑥) ∈ dom (𝑆 D 𝐹) ↔ (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥))))
3819, 37mpbid 231 . . . . . . . 8 ((𝜑𝑥𝑌) → (𝐺𝑥)(𝑆 D 𝐹)((𝑆 D 𝐹)‘(𝐺𝑥)))
39 dvfg 25828 . . . . . . . . . 10 (𝑇 ∈ {ℝ, ℂ} → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ)
40 ffun 6719 . . . . . . . . . 10 ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ → Fun (𝑇 D 𝐺))
41 funfvbrb 7054 . . . . . . . . . 10 (Fun (𝑇 D 𝐺) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)))
4216, 39, 40, 414syl 19 . . . . . . . . 9 ((𝜑𝑥𝑌) → (𝑥 ∈ dom (𝑇 D 𝐺) ↔ 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥)))
4321, 42mpbid 231 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑥(𝑇 D 𝐺)((𝑇 D 𝐺)‘𝑥))
44 eqid 2728 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
452, 6, 8, 12, 32, 33, 38, 43, 44dvcobr 25870 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑥(𝑇 D (𝐹𝐺))(((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)))
46 reldv 25792 . . . . . . . 8 Rel (𝑇 D (𝐹𝐺))
4746releldmi 5944 . . . . . . 7 (𝑥(𝑇 D (𝐹𝐺))(((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥)) → 𝑥 ∈ dom (𝑇 D (𝐹𝐺)))
4845, 47syl 17 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥 ∈ dom (𝑇 D (𝐹𝐺)))
4930, 48eqelssd 3999 . . . . 5 (𝜑 → dom (𝑇 D (𝐹𝐺)) = 𝑌)
5049feq2d 6702 . . . 4 (𝜑 → ((𝑇 D (𝐹𝐺)):dom (𝑇 D (𝐹𝐺))⟶ℂ ↔ (𝑇 D (𝐹𝐺)):𝑌⟶ℂ))
5125, 50mpbid 231 . . 3 (𝜑 → (𝑇 D (𝐹𝐺)):𝑌⟶ℂ)
5251feqmptd 6961 . 2 (𝜑 → (𝑇 D (𝐹𝐺)) = (𝑥𝑌 ↦ ((𝑇 D (𝐹𝐺))‘𝑥)))
5315, 11ssexd 5318 . . 3 (𝜑𝑌 ∈ V)
54 fvexd 6906 . . 3 ((𝜑𝑥𝑌) → ((𝑆 D 𝐹)‘(𝐺𝑥)) ∈ V)
55 fvexd 6906 . . 3 ((𝜑𝑥𝑌) → ((𝑇 D 𝐺)‘𝑥) ∈ V)
567feqmptd 6961 . . . 4 (𝜑𝐺 = (𝑥𝑌 ↦ (𝐺𝑥)))
5713, 34syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
583feq2d 6702 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
5957, 58mpbid 231 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6059feqmptd 6961 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑦𝑋 ↦ ((𝑆 D 𝐹)‘𝑦)))
61 fveq2 6891 . . . 4 (𝑦 = (𝐺𝑥) → ((𝑆 D 𝐹)‘𝑦) = ((𝑆 D 𝐹)‘(𝐺𝑥)))
6217, 56, 60, 61fmptco 7132 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘ 𝐺) = (𝑥𝑌 ↦ ((𝑆 D 𝐹)‘(𝐺𝑥))))
6315, 39syl 17 . . . . 5 (𝜑 → (𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ)
649feq2d 6702 . . . . 5 (𝜑 → ((𝑇 D 𝐺):dom (𝑇 D 𝐺)⟶ℂ ↔ (𝑇 D 𝐺):𝑌⟶ℂ))
6563, 64mpbid 231 . . . 4 (𝜑 → (𝑇 D 𝐺):𝑌⟶ℂ)
6665feqmptd 6961 . . 3 (𝜑 → (𝑇 D 𝐺) = (𝑥𝑌 ↦ ((𝑇 D 𝐺)‘𝑥)))
6753, 54, 55, 62, 66offval2 7699 . 2 (𝜑 → (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)) = (𝑥𝑌 ↦ (((𝑆 D 𝐹)‘(𝐺𝑥)) · ((𝑇 D 𝐺)‘𝑥))))
6823, 52, 673eqtr4d 2778 1 (𝜑 → (𝑇 D (𝐹𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘f · (𝑇 D 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  wss 3945  {cpr 4626   class class class wbr 5142  cmpt 5225  dom cdm 5672  ccom 5676  Fun wfun 6536  wf 6538  cfv 6542  (class class class)co 7414  f cof 7677  cc 11130  cr 11131   · cmul 11137  TopOpenctopn 17396  fldccnfld 21272   D cdv 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-icc 13357  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-limc 25788  df-dv 25789
This theorem is referenced by:  dvmptco  25897  dvsinax  45295  dvcosax  45308
  Copyright terms: Public domain W3C validator
OSZAR »