![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvbrb | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
funfvbrb | ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 7053 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
2 | df-br 5143 | . . 3 ⊢ (𝐴𝐹(𝐹‘𝐴) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹‘𝐴)) |
4 | funrel 6564 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | releldm 5940 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) | |
6 | 4, 5 | sylan 579 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) |
7 | 3, 6 | impbida 800 | 1 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 〈cop 4630 class class class wbr 5142 dom cdm 5672 Rel wrel 5677 Fun wfun 6536 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: fmptco 7132 fpwwe2lem12 10659 fpwwe2 10660 climdm 15524 invco 17747 ffthiso 17911 fuciso 17960 setciso 18073 catciso 18093 rngciso 20564 ringciso 20598 lmcau 25234 dvcnp 25841 dvadd 25864 dvmul 25865 dvaddf 25866 dvmulf 25867 dvco 25872 dvcof 25873 dvcjbr 25874 dvcnvlem 25901 dvferm1 25910 dvferm2 25912 ulmdm 26322 ulmdvlem3 26331 minvecolem4a 30680 hlimf 31040 hhsscms 31081 occllem 31106 occl 31107 chscllem4 31443 fmptcof2 32436 heiborlem9 37286 bfplem1 37289 iscard4 42957 xlimdm 45239 rngcisoALTV 47333 ringcisoALTV 47367 |
Copyright terms: Public domain | W3C validator |