MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcau Structured version   Visualization version   GIF version

Theorem lmcau 25259
Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of [Kreyszig] p. 28. (Contributed by NM, 29-Jan-2008.) (Proof shortened by Mario Carneiro, 5-May-2014.)
Hypothesis
Ref Expression
lmcau.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
lmcau (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))

Proof of Theorem lmcau
Dummy variables 𝑥 𝑦 𝑓 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcau.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21methaus 24447 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
3 lmfun 23303 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
4 funfvbrb 7063 . . . 4 (Fun (⇝𝑡𝐽) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
52, 3, 43syl 18 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
6 id 22 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
71, 6lmmbr 25204 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))))
87biimpa 475 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦)))
98simp1d 1139 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (𝑋pm ℂ))
10 simprr 771 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
11 simplll 773 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
128simp2d 1140 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
1312ad2antrr 724 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
14 rpre 13020 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1514ad2antlr 725 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑥 ∈ ℝ)
16 uzid 12873 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1716ad2antrl 726 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑗 ∈ (ℤ𝑗))
1817fvresd 6920 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) = (𝑓𝑗))
1910, 17ffvelcdmd 7098 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2018, 19eqeltrrd 2829 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
21 blhalf 24329 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2211, 13, 15, 20, 21syl22anc 837 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2310, 22fssd 6743 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
24 rphalfcl 13039 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
258simp3d 1141 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))
26 oveq2 7432 . . . . . . . . . . . . 13 (𝑦 = (𝑥 / 2) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) = (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2726feq3d 6712 . . . . . . . . . . . 12 (𝑦 = (𝑥 / 2) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ (𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
2827rexbidv 3174 . . . . . . . . . . 11 (𝑦 = (𝑥 / 2) → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
2928rspcv 3605 . . . . . . . . . 10 ((𝑥 / 2) ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3024, 25, 29syl2im 40 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3130impcom 406 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
32 uzf 12861 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
33 ffn 6725 . . . . . . . . 9 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
34 reseq2 5982 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → (𝑓𝑢) = (𝑓 ↾ (ℤ𝑗)))
35 id 22 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → 𝑢 = (ℤ𝑗))
3634, 35feq12d 6713 . . . . . . . . . 10 (𝑢 = (ℤ𝑗) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3736rexrn 7100 . . . . . . . . 9 (ℤ Fn ℤ → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3832, 33, 37mp2b 10 . . . . . . . 8 (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
3931, 38sylib 217 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
4023, 39reximddv 3167 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
4140ralrimiva 3142 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
42 iscau 25222 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
4342adantr 479 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
449, 41, 43mpbir2and 711 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (Cau‘𝐷))
4544ex 411 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) → 𝑓 ∈ (Cau‘𝐷)))
465, 45sylbid 239 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) → 𝑓 ∈ (Cau‘𝐷)))
4746ssrdv 3986 1 (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3057  wrex 3066  wss 3947  𝒫 cpw 4604   class class class wbr 5150  dom cdm 5680  ran crn 5681  cres 5682  Fun wfun 6545   Fn wfn 6546  wf 6547  cfv 6551  (class class class)co 7424  pm cpm 8850  cc 11142  cr 11143   / cdiv 11907  2c2 12303  cz 12594  cuz 12858  +crp 13012  ∞Metcxmet 21269  ballcbl 21271  MetOpencmopn 21274  𝑡clm 23148  Hauscha 23230  Cauccau 25199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-n0 12509  df-z 12595  df-uz 12859  df-q 12969  df-rp 13013  df-xneg 13130  df-xadd 13131  df-xmul 13132  df-icc 13369  df-topgen 17430  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-top 22814  df-topon 22831  df-bases 22867  df-lm 23151  df-haus 23237  df-cau 25202
This theorem is referenced by:  hlimcaui  31064
  Copyright terms: Public domain W3C validator
OSZAR »