![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setciso | Structured version Visualization version GIF version |
Description: An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcmon.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcmon.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
setcmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
setcmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
setciso.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
setciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | eqid 2728 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | setcmon.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | setcmon.c | . . . . . 6 ⊢ 𝐶 = (SetCat‘𝑈) | |
5 | 4 | setccat 18074 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | setcmon.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
8 | 4, 3 | setcbas 18067 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
9 | 7, 8 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
10 | setcmon.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
11 | 10, 8 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
12 | setciso.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
13 | 1, 2, 6, 9, 11, 12 | isoval 17748 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
14 | 13 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
15 | 1, 2, 6, 9, 11 | invfun 17747 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌)) |
16 | funfvbrb 7060 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
18 | 4, 3, 7, 10, 2 | setcinv 18079 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹))) |
19 | simpl 482 | . . . . 5 ⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹) → 𝐹:𝑋–1-1-onto→𝑌) | |
20 | 18, 19 | biimtrdi 252 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹:𝑋–1-1-onto→𝑌)) |
21 | 17, 20 | sylbid 239 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹:𝑋–1-1-onto→𝑌)) |
22 | eqid 2728 | . . . 4 ⊢ ◡𝐹 = ◡𝐹 | |
23 | 4, 3, 7, 10, 2 | setcinv 18079 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = ◡𝐹))) |
24 | funrel 6570 | . . . . . . 7 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌)) | |
25 | 15, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌)) |
26 | releldm 5946 | . . . . . . 7 ⊢ ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)) | |
27 | 26 | ex 412 | . . . . . 6 ⊢ (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
28 | 25, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
29 | 23, 28 | sylbird 260 | . . . 4 ⊢ (𝜑 → ((𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = ◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
30 | 22, 29 | mpan2i 696 | . . 3 ⊢ (𝜑 → (𝐹:𝑋–1-1-onto→𝑌 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
31 | 21, 30 | impbid 211 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
32 | 14, 31 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ◡ccnv 5677 dom cdm 5678 Rel wrel 5683 Fun wfun 6542 –1-1-onto→wf1o 6547 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 Catccat 17644 Invcinv 17728 Isociso 17729 SetCatcsetc 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-struct 17116 df-slot 17151 df-ndx 17163 df-base 17181 df-hom 17257 df-cco 17258 df-cat 17648 df-cid 17649 df-sect 17730 df-inv 17731 df-iso 17732 df-setc 18065 |
This theorem is referenced by: yonffthlem 18274 |
Copyright terms: Public domain | W3C validator |