MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulf Structured version   Visualization version   GIF version

Theorem dvmulf 25887
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvmulf (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))

Proof of Theorem dvmulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
3 dvaddf.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
4 dvbsss 25844 . . . . . 6 dom (𝑆 D 𝐹) ⊆ 𝑆
53, 4eqsstrrdi 4035 . . . . 5 (𝜑𝑋𝑆)
65adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑋𝑆)
7 dvaddf.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
87adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
9 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
109adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
113eleq2d 2815 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
1211biimpar 477 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
13 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1413eleq2d 2815 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
1514biimpar 477 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
162, 6, 8, 6, 10, 12, 15dvmul 25885 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹f · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
1716mpteq2dva 5248 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑆 D (𝐹f · 𝐺))‘𝑥)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
18 dvfg 25848 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ)
199, 18syl 17 . . . 4 (𝜑 → (𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ)
20 recnprss 25846 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
219, 20syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
22 mulcl 11223 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2322adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
249, 5ssexd 5324 . . . . . . . 8 (𝜑𝑋 ∈ V)
25 inidm 4219 . . . . . . . 8 (𝑋𝑋) = 𝑋
2623, 1, 7, 24, 24, 25off 7703 . . . . . . 7 (𝜑 → (𝐹f · 𝐺):𝑋⟶ℂ)
2721, 26, 5dvbss 25843 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹f · 𝐺)) ⊆ 𝑋)
2821adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
29 dvfg 25848 . . . . . . . . . . . 12 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
309, 29syl 17 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
32 ffun 6725 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
33 funfvbrb 7060 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3431, 32, 333syl 18 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
3512, 34mpbid 231 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
36 dvfg 25848 . . . . . . . . . . . 12 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
379, 36syl 17 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
3837adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
39 ffun 6725 . . . . . . . . . 10 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
40 funfvbrb 7060 . . . . . . . . . 10 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4138, 39, 403syl 18 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
4215, 41mpbid 231 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
43 eqid 2728 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
442, 6, 8, 6, 28, 35, 42, 43dvmulbr 25882 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
45 reldv 25812 . . . . . . . 8 Rel (𝑆 D (𝐹f · 𝐺))
4645releldmi 5950 . . . . . . 7 (𝑥(𝑆 D (𝐹f · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹f · 𝐺)))
4744, 46syl 17 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹f · 𝐺)))
4827, 47eqelssd 4001 . . . . 5 (𝜑 → dom (𝑆 D (𝐹f · 𝐺)) = 𝑋)
4948feq2d 6708 . . . 4 (𝜑 → ((𝑆 D (𝐹f · 𝐺)):dom (𝑆 D (𝐹f · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹f · 𝐺)):𝑋⟶ℂ))
5019, 49mpbid 231 . . 3 (𝜑 → (𝑆 D (𝐹f · 𝐺)):𝑋⟶ℂ)
5150feqmptd 6967 . 2 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (𝑥𝑋 ↦ ((𝑆 D (𝐹f · 𝐺))‘𝑥)))
52 ovexd 7455 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ V)
53 ovexd 7455 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ V)
54 fvexd 6912 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
55 fvexd 6912 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ V)
563feq2d 6708 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
5730, 56mpbid 231 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
5857feqmptd 6967 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
597feqmptd 6967 . . . 4 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
6024, 54, 55, 58, 59offval2 7705 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
61 fvexd 6912 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V)
62 fvexd 6912 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ V)
6313feq2d 6708 . . . . . 6 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
6437, 63mpbid 231 . . . . 5 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
6564feqmptd 6967 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
661feqmptd 6967 . . . 4 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
6724, 61, 62, 65, 66offval2 7705 . . 3 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
6824, 52, 53, 60, 67offval2 7705 . 2 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
6917, 51, 683eqtr4d 2778 1 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  wss 3947  {cpr 4631   class class class wbr 5148  cmpt 5231  dom cdm 5678  Fun wfun 6542  wf 6544  cfv 6548  (class class class)co 7420  f cof 7683  cc 11137  cr 11138   + caddc 11142   · cmul 11144  TopOpenctopn 17403  fldccnfld 21279   D cdv 25805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-fi 9435  df-sup 9466  df-inf 9467  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-icc 13364  df-fz 13518  df-fzo 13661  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-rest 17404  df-topn 17405  df-0g 17423  df-gsum 17424  df-topgen 17425  df-pt 17426  df-prds 17429  df-xrs 17484  df-qtop 17489  df-imas 17490  df-xps 17492  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-mulg 19024  df-cntz 19268  df-cmn 19737  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lp 23053  df-perf 23054  df-cn 23144  df-cnp 23145  df-haus 23232  df-tx 23479  df-hmeo 23672  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-xms 24239  df-ms 24240  df-tms 24241  df-cncf 24811  df-limc 25808  df-dv 25809
This theorem is referenced by:  dvcmulf  25889  dvexp  25898  dvmptmul  25906  expgrowth  43772  binomcxplemnotnn0  43793  dvmulcncf  45313
  Copyright terms: Public domain W3C validator
OSZAR »