![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem4a | Structured version Visualization version GIF version |
Description: Lemma for minveco 30714. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
Ref | Expression |
---|---|
minvecolem4a | ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
2 | phnv 30644 | . . . . . 6 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
4 | minveco.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
5 | elin 3965 | . . . . . . 7 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
6 | 4, 5 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
7 | 6 | simpld 493 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
8 | minveco.y | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
9 | minveco.d | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
10 | eqid 2728 | . . . . . 6 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
11 | eqid 2728 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
12 | 8, 9, 10, 11 | sspims 30569 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
13 | 3, 7, 12 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
14 | 6 | simprd 494 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ CBan) |
15 | eqid 2728 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
16 | 15, 10 | cbncms 30695 | . . . . 5 ⊢ (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
18 | 13, 17 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊))) |
19 | minveco.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
20 | minveco.m | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
21 | minveco.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
22 | minveco.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
23 | minveco.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
24 | minveco.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
25 | minveco.s | . . . . 5 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
26 | minveco.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) | |
27 | minveco.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) | |
28 | 19, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27 | minvecolem3 30706 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
29 | 19, 9 | imsmet 30521 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
30 | 1, 2, 29 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
31 | metxmet 24260 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
33 | causs 25246 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
34 | 32, 26, 33 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) |
35 | 28, 34 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) |
36 | eqid 2728 | . . . 4 ⊢ (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) | |
37 | 36 | cmetcau 25237 | . . 3 ⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
38 | 18, 35, 37 | syl2anc 582 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
39 | xmetres 24290 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) | |
40 | 36 | methaus 24449 | . . . 4 ⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
41 | 32, 39, 40 | 3syl 18 | . . 3 ⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
42 | lmfun 23305 | . . 3 ⊢ ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
43 | funfvbrb 7065 | . . 3 ⊢ (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) | |
44 | 41, 42, 43 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
45 | 38, 44 | mpbid 231 | 1 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 class class class wbr 5152 ↦ cmpt 5235 × cxp 5680 dom cdm 5682 ran crn 5683 ↾ cres 5684 Fun wfun 6547 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 infcinf 9472 ℝcr 11145 1c1 11147 + caddc 11149 < clt 11286 ≤ cle 11287 / cdiv 11909 ℕcn 12250 2c2 12305 ↑cexp 14066 ∞Metcxmet 21271 Metcmet 21272 MetOpencmopn 21276 ⇝𝑡clm 23150 Hauscha 23232 Cauccau 25201 CMetccmet 25202 NrmCVeccnv 30414 BaseSetcba 30416 −𝑣 cnsb 30419 normCVcnmcv 30420 IndMetcims 30421 SubSpcss 30551 CPreHilOLDccphlo 30642 CBanccbn 30692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 ax-mulf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-n0 12511 df-z 12597 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ico 13370 df-icc 13371 df-fl 13797 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-rest 17411 df-topgen 17432 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-top 22816 df-topon 22833 df-bases 22869 df-ntr 22944 df-nei 23022 df-lm 23153 df-haus 23239 df-fil 23770 df-fm 23862 df-flim 23863 df-flf 23864 df-cfil 25203 df-cau 25204 df-cmet 25205 df-grpo 30323 df-gid 30324 df-ginv 30325 df-gdiv 30326 df-ablo 30375 df-vc 30389 df-nv 30422 df-va 30425 df-ba 30426 df-sm 30427 df-0v 30428 df-vs 30429 df-nmcv 30430 df-ims 30431 df-ssp 30552 df-ph 30643 df-cbn 30693 |
This theorem is referenced by: minvecolem4b 30708 minvecolem4 30710 |
Copyright terms: Public domain | W3C validator |