MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp Structured version   Visualization version   GIF version

Theorem ablfacrp 20016
Description: A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups 𝐾, 𝐿 that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
ablfacrp.z 0 = (0g𝐺)
ablfacrp.s = (LSSum‘𝐺)
Assertion
Ref Expression
ablfacrp (𝜑 → ((𝐾𝐿) = { 0 } ∧ (𝐾 𝐿) = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥, 0
Allowed substitution hints:   (𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrp
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablfacrp.k . . . . . 6 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
2 ablfacrp.l . . . . . 6 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
31, 2ineq12i 4206 . . . . 5 (𝐾𝐿) = ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
4 inrab 4302 . . . . 5 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) = {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)}
53, 4eqtri 2756 . . . 4 (𝐾𝐿) = {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)}
6 ablfacrp.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
7 ablfacrp.o . . . . . . . . . . . . . 14 𝑂 = (od‘𝐺)
86, 7odcl 19484 . . . . . . . . . . . . 13 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
98adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝑂𝑥) ∈ ℕ0)
109nn0zd 12608 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑂𝑥) ∈ ℤ)
11 ablfacrp.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnzd 12609 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1312adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → 𝑀 ∈ ℤ)
14 ablfacrp.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
1514nnzd 12609 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → 𝑁 ∈ ℤ)
17 dvdsgcd 16513 . . . . . . . . . . 11 (((𝑂𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁)))
1810, 13, 16, 17syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁)))
19183impia 1115 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁))
20 ablfacrp.1 . . . . . . . . . 10 (𝜑 → (𝑀 gcd 𝑁) = 1)
21203ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑀 gcd 𝑁) = 1)
2219, 21breqtrd 5168 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) ∥ 1)
23 simp2 1135 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥𝐵)
24 dvds1 16289 . . . . . . . . 9 ((𝑂𝑥) ∈ ℕ0 → ((𝑂𝑥) ∥ 1 ↔ (𝑂𝑥) = 1))
2523, 8, 243syl 18 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → ((𝑂𝑥) ∥ 1 ↔ (𝑂𝑥) = 1))
2622, 25mpbid 231 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) = 1)
27 ablfacrp.g . . . . . . . . . 10 (𝜑𝐺 ∈ Abel)
28 ablgrp 19733 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2927, 28syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
30293ad2ant1 1131 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝐺 ∈ Grp)
31 ablfacrp.z . . . . . . . . 9 0 = (0g𝐺)
327, 31, 6odeq1 19508 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((𝑂𝑥) = 1 ↔ 𝑥 = 0 ))
3330, 23, 32syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → ((𝑂𝑥) = 1 ↔ 𝑥 = 0 ))
3426, 33mpbid 231 . . . . . 6 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥 = 0 )
35 velsn 4640 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
3634, 35sylibr 233 . . . . 5 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥 ∈ { 0 })
3736rabssdv 4068 . . . 4 (𝜑 → {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)} ⊆ { 0 })
385, 37eqsstrid 4026 . . 3 (𝜑 → (𝐾𝐿) ⊆ { 0 })
397, 6oddvdssubg 19803 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
4027, 12, 39syl2anc 583 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
411, 40eqeltrid 2833 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
4231subg0cl 19082 . . . . . 6 (𝐾 ∈ (SubGrp‘𝐺) → 0𝐾)
4341, 42syl 17 . . . . 5 (𝜑0𝐾)
447, 6oddvdssubg 19803 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4527, 15, 44syl2anc 583 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
462, 45eqeltrid 2833 . . . . . 6 (𝜑𝐿 ∈ (SubGrp‘𝐺))
4731subg0cl 19082 . . . . . 6 (𝐿 ∈ (SubGrp‘𝐺) → 0𝐿)
4846, 47syl 17 . . . . 5 (𝜑0𝐿)
4943, 48elind 4190 . . . 4 (𝜑0 ∈ (𝐾𝐿))
5049snssd 4808 . . 3 (𝜑 → { 0 } ⊆ (𝐾𝐿))
5138, 50eqssd 3995 . 2 (𝜑 → (𝐾𝐿) = { 0 })
52 ablfacrp.s . . . . . 6 = (LSSum‘𝐺)
5352lsmsubg2 19807 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) → (𝐾 𝐿) ∈ (SubGrp‘𝐺))
5427, 41, 46, 53syl3anc 1369 . . . 4 (𝜑 → (𝐾 𝐿) ∈ (SubGrp‘𝐺))
556subgss 19075 . . . 4 ((𝐾 𝐿) ∈ (SubGrp‘𝐺) → (𝐾 𝐿) ⊆ 𝐵)
5654, 55syl 17 . . 3 (𝜑 → (𝐾 𝐿) ⊆ 𝐵)
57 eqid 2728 . . . . . 6 (.g𝐺) = (.g𝐺)
586, 57mulg1 19029 . . . . 5 (𝑔𝐵 → (1(.g𝐺)𝑔) = 𝑔)
5958adantl 481 . . . 4 ((𝜑𝑔𝐵) → (1(.g𝐺)𝑔) = 𝑔)
60 bezout 16512 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6112, 15, 60syl2anc 583 . . . . . 6 (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6261adantr 480 . . . . 5 ((𝜑𝑔𝐵) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6320ad2antrr 725 . . . . . . . 8 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1)
6463eqeq1d 2730 . . . . . . 7 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) ↔ 1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))))
6512ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℤ)
66 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
6765, 66zmulcld 12696 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℤ)
6867zcnd 12691 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℂ)
6915ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℤ)
70 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
7169, 70zmulcld 12696 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℤ)
7271zcnd 12691 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℂ)
7368, 72addcomd 11440 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎) + (𝑁 · 𝑏)) = ((𝑁 · 𝑏) + (𝑀 · 𝑎)))
7473oveq1d 7429 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) = (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔))
7529ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐺 ∈ Grp)
76 simplr 768 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑔𝐵)
77 eqid 2728 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
786, 57, 77mulgdir 19054 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑏) ∈ ℤ ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔𝐵)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
7975, 71, 67, 76, 78syl13anc 1370 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
8074, 79eqtrd 2768 . . . . . . . . 9 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
8141ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐾 ∈ (SubGrp‘𝐺))
8246ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (SubGrp‘𝐺))
836, 57mulgcl 19039 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑏) ∈ ℤ ∧ 𝑔𝐵) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵)
8475, 71, 76, 83syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵)
856, 7odcl 19484 . . . . . . . . . . . . . . . 16 (𝑔𝐵 → (𝑂𝑔) ∈ ℕ0)
8685ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∈ ℕ0)
8786nn0zd 12608 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∈ ℤ)
8865, 69zmulcld 12696 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑁) ∈ ℤ)
89 ablfacrp.2 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
9011, 14nnmulcld 12289 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 · 𝑁) ∈ ℕ)
9190nnnn0d 12556 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
9289, 91eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐵) ∈ ℕ0)
936fvexi 6905 . . . . . . . . . . . . . . . . . . 19 𝐵 ∈ V
94 hashclb 14343 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
9692, 95sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ Fin)
9796ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ Fin)
986, 7oddvds2 19514 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑔𝐵) → (𝑂𝑔) ∥ (♯‘𝐵))
9975, 97, 76, 98syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (♯‘𝐵))
10089ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (♯‘𝐵) = (𝑀 · 𝑁))
10199, 100breqtrd 5168 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑀 · 𝑁))
10287, 88, 70, 101dvdsmultr1d 16267 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑏))
10365zcnd 12691 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℂ)
10469zcnd 12691 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℂ)
10570zcnd 12691 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
106103, 104, 105mulassd 11261 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑏) = (𝑀 · (𝑁 · 𝑏)))
107102, 106breqtrd 5168 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))
1086, 7, 57odmulgid 19502 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑔𝐵 ∧ (𝑁 · 𝑏) ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏))))
10975, 76, 71, 65, 108syl31anc 1371 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏))))
110107, 109mpbird 257 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀)
111 fveq2 6891 . . . . . . . . . . . . 13 (𝑥 = ((𝑁 · 𝑏)(.g𝐺)𝑔) → (𝑂𝑥) = (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)))
112111breq1d 5152 . . . . . . . . . . . 12 (𝑥 = ((𝑁 · 𝑏)(.g𝐺)𝑔) → ((𝑂𝑥) ∥ 𝑀 ↔ (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀))
113112, 1elrab2 3684 . . . . . . . . . . 11 (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾 ↔ (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀))
11484, 110, 113sylanbrc 582 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾)
1156, 57mulgcl 19039 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔𝐵) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵)
11675, 67, 76, 115syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵)
11787, 88, 66, 101dvdsmultr1d 16267 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑎))
118 zcn 12587 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
119118ad2antrl 727 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
120 mulass 11220 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑀 · (𝑁 · 𝑎)))
121 mul12 11403 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑀 · (𝑁 · 𝑎)) = (𝑁 · (𝑀 · 𝑎)))
122120, 121eqtrd 2768 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎)))
123103, 104, 119, 122syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎)))
124117, 123breqtrd 5168 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))
1256, 7, 57odmulgid 19502 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑔𝐵 ∧ (𝑀 · 𝑎) ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎))))
12675, 76, 67, 69, 125syl31anc 1371 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎))))
127124, 126mpbird 257 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁)
128 fveq2 6891 . . . . . . . . . . . . 13 (𝑥 = ((𝑀 · 𝑎)(.g𝐺)𝑔) → (𝑂𝑥) = (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)))
129128breq1d 5152 . . . . . . . . . . . 12 (𝑥 = ((𝑀 · 𝑎)(.g𝐺)𝑔) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁))
130129, 2elrab2 3684 . . . . . . . . . . 11 (((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿 ↔ (((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁))
131116, 127, 130sylanbrc 582 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿)
13277, 52lsmelvali 19598 . . . . . . . . . 10 (((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) ∧ (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾 ∧ ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿)) → (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)) ∈ (𝐾 𝐿))
13381, 82, 114, 131, 132syl22anc 838 . . . . . . . . 9 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)) ∈ (𝐾 𝐿))
13480, 133eqeltrd 2829 . . . . . . . 8 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) ∈ (𝐾 𝐿))
135 oveq1 7421 . . . . . . . . 9 (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) = (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔))
136135eleq1d 2814 . . . . . . . 8 (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → ((1(.g𝐺)𝑔) ∈ (𝐾 𝐿) ↔ (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
137134, 136syl5ibrcom 246 . . . . . . 7 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
13864, 137sylbid 239 . . . . . 6 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
139138rexlimdvva 3207 . . . . 5 ((𝜑𝑔𝐵) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
14062, 139mpd 15 . . . 4 ((𝜑𝑔𝐵) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿))
14159, 140eqeltrrd 2830 . . 3 ((𝜑𝑔𝐵) → 𝑔 ∈ (𝐾 𝐿))
14256, 141eqelssd 3999 . 2 (𝜑 → (𝐾 𝐿) = 𝐵)
14351, 142jca 511 1 (𝜑 → ((𝐾𝐿) = { 0 } ∧ (𝐾 𝐿) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3066  {crab 3428  Vcvv 3470  cin 3944  wss 3945  {csn 4624   class class class wbr 5142  cfv 6542  (class class class)co 7414  Fincfn 8957  cc 11130  1c1 11133   + caddc 11135   · cmul 11137  cn 12236  0cn0 12496  cz 12582  chash 14315  cdvds 16224   gcd cgcd 16462  Basecbs 17173  +gcplusg 17226  0gc0g 17414  Grpcgrp 18883  .gcmg 19016  SubGrpcsubg 19068  odcod 19472  LSSumclsm 19582  Abelcabl 19729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8718  df-ec 8720  df-qs 8724  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-dvds 16225  df-gcd 16463  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-subg 19071  df-eqg 19073  df-cntz 19261  df-od 19476  df-lsm 19584  df-cmn 19730  df-abl 19731
This theorem is referenced by:  ablfacrp2  20017  ablfac1b  20020
  Copyright terms: Public domain W3C validator
OSZAR »