![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcof1od | Structured version Visualization version GIF version |
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 7296 and fcofo 7297. Formerly part of proof of fcof1o 7305. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
fcof1od.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcof1od.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
fcof1od.a | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
fcof1od.b | ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
fcof1od | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1od.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcof1od.a | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) | |
3 | fcof1 7296 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
5 | fcof1od.g | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
6 | fcof1od.b | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) | |
7 | fcofo 7297 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) | |
8 | 1, 5, 6, 7 | syl3anc 1369 | . 2 ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
9 | df-f1o 6555 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
10 | 4, 8, 9 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 I cid 5575 ↾ cres 5680 ∘ ccom 5682 ⟶wf 6544 –1-1→wf1 6545 –onto→wfo 6546 –1-1-onto→wf1o 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 |
This theorem is referenced by: 2fcoidinvd 7304 fcof1o 7305 2fvidf1od 7307 catciso 18100 pmtrff1o 19418 evpmodpmf1o 21528 |
Copyright terms: Public domain | W3C validator |