Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findreccl Structured version   Visualization version   GIF version

Theorem findreccl 35937
Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.)
Hypothesis
Ref Expression
findreccl.1 (𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)
Assertion
Ref Expression
findreccl (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
Distinct variable groups:   𝑧,𝐺   𝑧,𝐴   𝑧,𝑃
Allowed substitution hint:   𝐶(𝑧)

Proof of Theorem findreccl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rdg0g 8448 . . 3 (𝐴𝑃 → (rec(𝐺, 𝐴)‘∅) = 𝐴)
2 eleq1a 2824 . . 3 (𝐴𝑃 → ((rec(𝐺, 𝐴)‘∅) = 𝐴 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃))
31, 2mpd 15 . 2 (𝐴𝑃 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃)
4 nnon 7876 . . . 4 (𝑦 ∈ ω → 𝑦 ∈ On)
5 fveq2 6897 . . . . . . 7 (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → (𝐺𝑧) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦)))
65eleq1d 2814 . . . . . 6 (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → ((𝐺𝑧) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃))
7 findreccl.1 . . . . . 6 (𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)
86, 7vtoclga 3563 . . . . 5 ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)
9 rdgsuc 8445 . . . . . 6 (𝑦 ∈ On → (rec(𝐺, 𝐴)‘suc 𝑦) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦)))
109eleq1d 2814 . . . . 5 (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃))
118, 10imbitrrid 245 . . . 4 (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))
124, 11syl 17 . . 3 (𝑦 ∈ ω → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))
1312a1d 25 . 2 (𝑦 ∈ ω → (𝐴𝑃 → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)))
143, 13findfvcl 35936 1 (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  c0 4323  Oncon0 6369  suc csuc 6371  cfv 6548  ωcom 7870  reccrdg 8430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431
This theorem is referenced by:  findabrcl  35938
  Copyright terms: Public domain W3C validator
OSZAR »