MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvrnss Structured version   Visualization version   GIF version

Theorem fnfvrnss 7134
Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
Assertion
Ref Expression
fnfvrnss ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fnfvrnss
StepHypRef Expression
1 ffnfv 7132 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 frn 6732 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sylbir 234 1 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  wral 3057  wss 3947  ran crn 5681   Fn wfn 6546  wf 6547  cfv 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-fv 6559
This theorem is referenced by:  ffvresb  7138  dffi3  9460  infxpenlem  10042  alephsing  10305  seqexw  14020  srgfcl  20141  mplind  22019  1stckgenlem  23475  psmetxrge0  24237  plyreres  26235  aannenlem1  26281  subuhgr  29117  subupgr  29118  subumgr  29119  subusgr  29120  elrspunidl  33162  rmulccn  33534  esumfsup  33694  sxbrsigalem3  33897  sitgf  33972  ctbssinf  36890  dihf11lem  40743  hdmaprnN  41341  hgmaprnN  41378  ofoafg  42786  naddcnff  42794  ntrrn  43555  mnurndlem1  43721  volicoff  45385  dirkercncflem2  45494  fourierdlem15  45512  fourierdlem42  45539  grimuhgr  47227
  Copyright terms: Public domain W3C validator
OSZAR »