MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr2g Structured version   Visualization version   GIF version

Theorem fpr2g 7217
Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
fpr2g ((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))

Proof of Theorem fpr2g
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹:{𝐴, 𝐵}⟶𝐶)
2 prid1g 4760 . . . . 5 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
32ad2antrr 725 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐴 ∈ {𝐴, 𝐵})
41, 3ffvelcdmd 7089 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹𝐴) ∈ 𝐶)
5 prid2g 4761 . . . . 5 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
65ad2antlr 726 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐵 ∈ {𝐴, 𝐵})
71, 6ffvelcdmd 7089 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹𝐵) ∈ 𝐶)
8 ffn 6716 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝐶𝐹 Fn {𝐴, 𝐵})
98adantl 481 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 Fn {𝐴, 𝐵})
10 fnpr2g 7216 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1110adantr 480 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
129, 11mpbid 231 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
134, 7, 123jca 1126 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐹:{𝐴, 𝐵}⟶𝐶) → ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1410biimpar 477 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}) → 𝐹 Fn {𝐴, 𝐵})
15143ad2antr3 1188 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 Fn {𝐴, 𝐵})
16 simpr3 1194 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
172ad2antrr 725 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐴 ∈ {𝐴, 𝐵})
18 simpr1 1192 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (𝐹𝐴) ∈ 𝐶)
1917, 18opelxpd 5711 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → ⟨𝐴, (𝐹𝐴)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
205ad2antlr 726 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐵 ∈ {𝐴, 𝐵})
21 simpr2 1193 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → (𝐹𝐵) ∈ 𝐶)
2220, 21opelxpd 5711 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → ⟨𝐵, (𝐹𝐵)⟩ ∈ ({𝐴, 𝐵} × 𝐶))
2319, 22prssd 4821 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ⊆ ({𝐴, 𝐵} × 𝐶))
2416, 23eqsstrd 4016 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶))
25 dff2 7103 . . 3 (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ (𝐹 Fn {𝐴, 𝐵} ∧ 𝐹 ⊆ ({𝐴, 𝐵} × 𝐶)))
2615, 24, 25sylanbrc 582 . 2 (((𝐴𝑉𝐵𝑊) ∧ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})) → 𝐹:{𝐴, 𝐵}⟶𝐶)
2713, 26impbida 800 1 ((𝐴𝑉𝐵𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹𝐴) ∈ 𝐶 ∧ (𝐹𝐵) ∈ 𝐶𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wss 3945  {cpr 4626  cop 4630   × cxp 5670   Fn wfn 6537  wf 6538  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550
This theorem is referenced by:  f1prex  7287  uhgrwkspthlem2  29561  rrx2xpref1o  47785
  Copyright terms: Public domain W3C validator
OSZAR »