Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsneqrn Structured version   Visualization version   GIF version

Theorem fsneqrn 44665
Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsneqrn.a (𝜑𝐴𝑉)
fsneqrn.b 𝐵 = {𝐴}
fsneqrn.f (𝜑𝐹 Fn 𝐵)
fsneqrn.g (𝜑𝐺 Fn 𝐵)
Assertion
Ref Expression
fsneqrn (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) ∈ ran 𝐺))

Proof of Theorem fsneqrn
StepHypRef Expression
1 fsneqrn.f . . . . . . 7 (𝜑𝐹 Fn 𝐵)
2 dffn3 6733 . . . . . . 7 (𝐹 Fn 𝐵𝐹:𝐵⟶ran 𝐹)
31, 2sylib 217 . . . . . 6 (𝜑𝐹:𝐵⟶ran 𝐹)
4 fsneqrn.a . . . . . . . 8 (𝜑𝐴𝑉)
5 snidg 4663 . . . . . . . 8 (𝐴𝑉𝐴 ∈ {𝐴})
64, 5syl 17 . . . . . . 7 (𝜑𝐴 ∈ {𝐴})
7 fsneqrn.b . . . . . . . . 9 𝐵 = {𝐴}
87a1i 11 . . . . . . . 8 (𝜑𝐵 = {𝐴})
98eqcomd 2731 . . . . . . 7 (𝜑 → {𝐴} = 𝐵)
106, 9eleqtrd 2827 . . . . . 6 (𝜑𝐴𝐵)
113, 10ffvelcdmd 7092 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ran 𝐹)
1211adantr 479 . . . 4 ((𝜑𝐹 = 𝐺) → (𝐹𝐴) ∈ ran 𝐹)
13 simpr 483 . . . . 5 ((𝜑𝐹 = 𝐺) → 𝐹 = 𝐺)
1413rneqd 5939 . . . 4 ((𝜑𝐹 = 𝐺) → ran 𝐹 = ran 𝐺)
1512, 14eleqtrd 2827 . . 3 ((𝜑𝐹 = 𝐺) → (𝐹𝐴) ∈ ran 𝐺)
1615ex 411 . 2 (𝜑 → (𝐹 = 𝐺 → (𝐹𝐴) ∈ ran 𝐺))
17 simpr 483 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → (𝐹𝐴) ∈ ran 𝐺)
18 fsneqrn.g . . . . . . . . . 10 (𝜑𝐺 Fn 𝐵)
19 dffn2 6723 . . . . . . . . . 10 (𝐺 Fn 𝐵𝐺:𝐵⟶V)
2018, 19sylib 217 . . . . . . . . 9 (𝜑𝐺:𝐵⟶V)
218feq2d 6707 . . . . . . . . 9 (𝜑 → (𝐺:𝐵⟶V ↔ 𝐺:{𝐴}⟶V))
2220, 21mpbid 231 . . . . . . . 8 (𝜑𝐺:{𝐴}⟶V)
234, 22rnsnf 44638 . . . . . . 7 (𝜑 → ran 𝐺 = {(𝐺𝐴)})
2423adantr 479 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → ran 𝐺 = {(𝐺𝐴)})
2517, 24eleqtrd 2827 . . . . 5 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → (𝐹𝐴) ∈ {(𝐺𝐴)})
26 elsni 4646 . . . . 5 ((𝐹𝐴) ∈ {(𝐺𝐴)} → (𝐹𝐴) = (𝐺𝐴))
2725, 26syl 17 . . . 4 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → (𝐹𝐴) = (𝐺𝐴))
284adantr 479 . . . . 5 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → 𝐴𝑉)
291adantr 479 . . . . 5 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → 𝐹 Fn 𝐵)
3018adantr 479 . . . . 5 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → 𝐺 Fn 𝐵)
3128, 7, 29, 30fsneq 44660 . . . 4 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))
3227, 31mpbird 256 . . 3 ((𝜑 ∧ (𝐹𝐴) ∈ ran 𝐺) → 𝐹 = 𝐺)
3332ex 411 . 2 (𝜑 → ((𝐹𝐴) ∈ ran 𝐺𝐹 = 𝐺))
3416, 33impbid 211 1 (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) ∈ ran 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  {csn 4629  ran crn 5678   Fn wfn 6542  wf 6543  cfv 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555
This theorem is referenced by:  ssmapsn  44670
  Copyright terms: Public domain W3C validator
OSZAR »