![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version |
Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
2 | fsuppimp 9386 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 class class class wbr 5142 Fun wfun 6536 (class class class)co 7414 supp csupp 8159 Fincfn 8957 finSupp cfsupp 9379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-fsupp 9380 |
This theorem is referenced by: fsuppsssupp 9398 fsuppsssuppgd 9399 fsuppxpfi 9402 fsuppun 9404 resfsupp 9413 fsuppmptif 9416 fsuppco 9419 fsuppco2 9420 fsuppcor 9421 cantnfcl 9684 cantnfp1lem1 9695 fsuppmapnn0fiublem 13981 fsuppmapnn0fiub 13982 fsuppmapnn0ub 13986 gsumzcl 19859 gsumcl 19863 gsumzadd 19870 gsumzmhm 19885 gsumzoppg 19892 gsum2dlem1 19918 gsum2dlem2 19919 gsum2d 19920 gsumxp2 19928 gsumdixp 20248 lcomfsupp 20778 mptscmfsupp0 20803 regsumsupp 21547 frlmphllem 21707 uvcresum 21720 frlmsslsp 21723 frlmup1 21725 mplcoe1 21968 mplbas2 21973 psrbagev1 22014 psrbagev1OLD 22015 evlslem2 22018 evlslem6 22020 psdmplcl 22079 tsmsgsum 24036 rrxcph 25313 rrxfsupp 25323 mdegldg 25995 mdegcl 25998 plypf1 26139 fsuppinisegfi 32461 fsupprnfi 32466 fsuppcurry1 32501 fsuppcurry2 32502 offinsupp1 32503 gsumhashmul 32764 rmfsupp2 32940 elrspunidl 33138 elrspunsn 33139 evls1fpws 33240 fedgmullem1 33317 fedgmullem2 33318 evls1fldgencl 33348 zarcmplem 33476 fsuppind 41817 mnringmulrcld 43659 rmfsupp 47432 mndpfsupp 47434 scmfsupp 47436 lincresunit2 47540 |
Copyright terms: Public domain | W3C validator |