MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsgsum Structured version   Visualization version   GIF version

Theorem tsmsgsum 24056
Description: The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsid.b 𝐵 = (Base‘𝐺)
tsmsid.z 0 = (0g𝐺)
tsmsid.1 (𝜑𝐺 ∈ CMnd)
tsmsid.2 (𝜑𝐺 ∈ TopSp)
tsmsid.a (𝜑𝐴𝑉)
tsmsid.f (𝜑𝐹:𝐴𝐵)
tsmsid.w (𝜑𝐹 finSupp 0 )
tsmsgsum.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tsmsgsum (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))

Proof of Theorem tsmsgsum
Dummy variables 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsid.2 . . . . . . 7 (𝜑𝐺 ∈ TopSp)
2 tsmsid.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 tsmsgsum.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
42, 3istps 22849 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 217 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 toponuni 22829 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
75, 6syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
87eleq2d 2815 . . . 4 (𝜑 → (𝑥𝐵𝑥 𝐽))
9 elfpw 9379 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
109simplbi 497 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
12 suppssdm 8182 . . . . . . . . . . . . . . 15 (𝐹 supp 0 ) ⊆ dom 𝐹
13 tsmsid.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴𝐵)
1412, 13fssdm 6742 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
1514ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝐴)
1611, 15unssd 4186 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴)
17 elinel2 4196 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1817adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
19 tsmsid.w . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0 )
2019ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 finSupp 0 )
2120fsuppimpd 9394 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ∈ Fin)
22 unfi 9197 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
2318, 21, 22syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
24 elfpw 9379 . . . . . . . . . . . 12 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴 ∧ (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin))
2516, 23, 24sylanbrc 582 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin))
26 ssun1 4172 . . . . . . . . . . . . . . 15 𝑦 ⊆ (𝑦 ∪ (𝐹 supp 0 ))
27 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑧 = (𝑦 ∪ (𝐹 supp 0 )))
2826, 27sseqtrrid 4033 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑦𝑧)
29 pm5.5 361 . . . . . . . . . . . . . 14 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
31 reseq2 5980 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐹𝑧) = (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 ))))
3231oveq2d 7436 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))))
3332eleq1d 2814 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3430, 33bitrd 279 . . . . . . . . . . . 12 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3534rspcv 3605 . . . . . . . . . . 11 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3625, 35syl 17 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
37 tsmsid.z . . . . . . . . . . . 12 0 = (0g𝐺)
38 tsmsid.1 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ CMnd)
3938ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
40 tsmsid.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
4140ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
4213ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
43 ssun2 4173 . . . . . . . . . . . . 13 (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 ))
4443a1i 11 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 )))
452, 37, 39, 41, 42, 44, 20gsumres 19868 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
4645eleq1d 2814 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢 ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
4736, 46sylibd 238 . . . . . . . . 9 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
4847rexlimdva 3152 . . . . . . . 8 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
4919fsuppimpd 9394 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
50 elfpw 9379 . . . . . . . . . . 11 ((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝐹 supp 0 ) ⊆ 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin))
5114, 49, 50sylanbrc 582 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin))
5238ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐺 ∈ CMnd)
5340ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐴𝑉)
5413ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹:𝐴𝐵)
55 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐹 supp 0 ) ⊆ 𝑧)
5619ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹 finSupp 0 )
572, 37, 52, 53, 54, 55, 56gsumres 19868 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg 𝐹))
58 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg 𝐹) ∈ 𝑢)
5957, 58eqeltrd 2829 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)
6059expr 456 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6160ralrimiva 3143 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
62 sseq1 4005 . . . . . . . . . . 11 (𝑦 = (𝐹 supp 0 ) → (𝑦𝑧 ↔ (𝐹 supp 0 ) ⊆ 𝑧))
6362rspceaimv 3615 . . . . . . . . . 10 (((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6451, 61, 63syl2an2r 684 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6564expr 456 . . . . . . . 8 ((𝜑𝑢𝐽) → ((𝐺 Σg 𝐹) ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6648, 65impbid 211 . . . . . . 7 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
67 disjsn 4716 . . . . . . . 8 ((𝑢 ∩ {(𝐺 Σg 𝐹)}) = ∅ ↔ ¬ (𝐺 Σg 𝐹) ∈ 𝑢)
6867necon2abii 2988 . . . . . . 7 ((𝐺 Σg 𝐹) ∈ 𝑢 ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)
6966, 68bitrdi 287 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))
7069imbi2d 340 . . . . 5 ((𝜑𝑢𝐽) → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
7170ralbidva 3172 . . . 4 (𝜑 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
728, 71anbi12d 631 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
73 eqid 2728 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
742, 3, 73, 38, 1, 40, 13eltsms 24050 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
75 topontop 22828 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
765, 75syl 17 . . . 4 (𝜑𝐽 ∈ Top)
772, 37, 38, 40, 13, 19gsumcl 19870 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
7877snssd 4813 . . . . 5 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵)
7978, 7sseqtrd 4020 . . . 4 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐽)
80 eqid 2728 . . . . 5 𝐽 = 𝐽
8180elcls2 22991 . . . 4 ((𝐽 ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8276, 79, 81syl2anc 583 . . 3 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8372, 74, 823bitr4d 311 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})))
8483eqrdv 2726 1 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937  wral 3058  wrex 3067  cun 3945  cin 3946  wss 3947  c0 4323  𝒫 cpw 4603  {csn 4629   cuni 4908   class class class wbr 5148  cres 5680  wf 6544  cfv 6548  (class class class)co 7420   supp csupp 8165  Fincfn 8964   finSupp cfsupp 9386  Basecbs 17180  TopOpenctopn 17403  0gc0g 17421   Σg cgsu 17422  CMndccmn 19735  Topctop 22808  TopOnctopon 22825  TopSpctps 22847  clsccl 22935   tsums ctsu 24043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-seq 14000  df-hash 14323  df-0g 17423  df-gsum 17424  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-cntz 19268  df-cmn 19737  df-fbas 21276  df-fg 21277  df-top 22809  df-topon 22826  df-topsp 22848  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-tsms 24044
This theorem is referenced by:  tsmsid  24057  tgptsmscls  24067
  Copyright terms: Public domain W3C validator
OSZAR »