MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcresum Structured version   Visualization version   GIF version

Theorem uvcresum 21720
Description: Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
uvcresum.u 𝑈 = (𝑅 unitVec 𝐼)
uvcresum.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcresum.b 𝐵 = (Base‘𝑌)
uvcresum.v · = ( ·𝑠𝑌)
Assertion
Ref Expression
uvcresum ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋f · 𝑈)))

Proof of Theorem uvcresum
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcresum.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2728 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 uvcresum.b . . . . . . 7 𝐵 = (Base‘𝑌)
41, 2, 3frlmbasf 21687 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
543adant1 1128 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
65feqmptd 6961 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑋𝑎)))
7 eqid 2728 . . . . . . 7 (0g𝑅) = (0g𝑅)
8 simpl1 1189 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Ring)
9 ringmnd 20176 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
108, 9syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Mnd)
11 simpl2 1190 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝐼𝑊)
12 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑎𝐼)
13 simpl2 1190 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝐼𝑊)
145ffvelcdmda 7088 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
15 uvcresum.u . . . . . . . . . . . . . . . . 17 𝑈 = (𝑅 unitVec 𝐼)
1615, 1, 3uvcff 21718 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
17163adant3 1130 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈:𝐼𝐵)
1817ffvelcdmda 7088 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) ∈ 𝐵)
19 uvcresum.v . . . . . . . . . . . . . 14 · = ( ·𝑠𝑌)
20 eqid 2728 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
211, 3, 2, 13, 14, 18, 19, 20frlmvscafval 21693 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = ((𝐼 × {(𝑋𝑏)}) ∘f (.r𝑅)(𝑈𝑏)))
2214adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
231, 2, 3frlmbasf 21687 . . . . . . . . . . . . . . . 16 ((𝐼𝑊 ∧ (𝑈𝑏) ∈ 𝐵) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2413, 18, 23syl2anc 583 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2524ffvelcdmda 7088 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑈𝑏)‘𝑎) ∈ (Base‘𝑅))
26 fconstmpt 5734 . . . . . . . . . . . . . . 15 (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏))
2726a1i 11 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏)))
2824feqmptd 6961 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) = (𝑎𝐼 ↦ ((𝑈𝑏)‘𝑎)))
2913, 22, 25, 27, 28offval2 7699 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝐼 × {(𝑋𝑏)}) ∘f (.r𝑅)(𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
3021, 29eqtrd 2768 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
311frlmlmod 21676 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
32313adant3 1130 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑌 ∈ LMod)
3332adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝑌 ∈ LMod)
341frlmsca 21680 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
35343adant3 1130 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 = (Scalar‘𝑌))
3635fveq2d 6895 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3736adantr 480 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3814, 37eleqtrd 2831 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)))
39 eqid 2728 . . . . . . . . . . . . . 14 (Scalar‘𝑌) = (Scalar‘𝑌)
40 eqid 2728 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
413, 39, 19, 40lmodvscl 20754 . . . . . . . . . . . . 13 ((𝑌 ∈ LMod ∧ (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑏) ∈ 𝐵) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4233, 38, 18, 41syl3anc 1369 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4330, 42eqeltrrd 2830 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵)
441, 2, 3frlmbasf 21687 . . . . . . . . . . 11 ((𝐼𝑊 ∧ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4513, 43, 44syl2anc 583 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4645fvmptelcdm 7117 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
4746an32s 651 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
4847fmpttd 7119 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4983ad2ant1 1131 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑅 ∈ Ring)
50113ad2ant1 1131 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝐼𝑊)
51 simp2 1135 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝐼)
52123ad2ant1 1131 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑎𝐼)
53 simp3 1136 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝑎)
5415, 49, 50, 51, 52, 53, 7uvcvv0 21717 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑈𝑏)‘𝑎) = (0g𝑅))
5554oveq2d 7430 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑏)(.r𝑅)(0g𝑅)))
5614adantlr 714 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
57563adant3 1130 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → (𝑋𝑏) ∈ (Base‘𝑅))
582, 20, 7ringrz 20223 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
5949, 57, 58syl2anc 583 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
6055, 59eqtrd 2768 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = (0g𝑅))
6160, 11suppsssn 8200 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) supp (0g𝑅)) ⊆ {𝑎})
622, 7, 10, 11, 12, 48, 61gsumpt 19910 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎))
63 fveq2 6891 . . . . . . . . . 10 (𝑏 = 𝑎 → (𝑋𝑏) = (𝑋𝑎))
64 fveq2 6891 . . . . . . . . . . 11 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
6564fveq1d 6893 . . . . . . . . . 10 (𝑏 = 𝑎 → ((𝑈𝑏)‘𝑎) = ((𝑈𝑎)‘𝑎))
6663, 65oveq12d 7432 . . . . . . . . 9 (𝑏 = 𝑎 → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
67 eqid 2728 . . . . . . . . 9 (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))
68 ovex 7447 . . . . . . . . 9 ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) ∈ V
6966, 67, 68fvmpt 6999 . . . . . . . 8 (𝑎𝐼 → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
7069adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
71 eqid 2728 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
7215, 8, 11, 12, 71uvcvv1 21716 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑈𝑎)‘𝑎) = (1r𝑅))
7372oveq2d 7430 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = ((𝑋𝑎)(.r𝑅)(1r𝑅)))
745ffvelcdmda 7088 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑋𝑎) ∈ (Base‘𝑅))
752, 20, 71ringridm 20199 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
768, 74, 75syl2anc 583 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
7773, 76eqtrd 2768 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = (𝑋𝑎))
7870, 77eqtrd 2768 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = (𝑋𝑎))
7962, 78eqtrd 2768 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = (𝑋𝑎))
8079mpteq2dva 5242 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑋𝑎)))
816, 80eqtr4d 2771 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
82 eqid 2728 . . . 4 (0g𝑌) = (0g𝑌)
83 simp2 1135 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝐼𝑊)
84 simp1 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 ∈ Ring)
85 mptexg 7227 . . . . . 6 (𝐼𝑊 → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
86853ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
87 funmpt 6585 . . . . . 6 Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
8887a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
89 fvexd 6906 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g𝑌) ∈ V)
901, 7, 3frlmbasfsupp 21685 . . . . . . 7 ((𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
91903adant1 1128 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
9291fsuppimpd 9387 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g𝑅)) ∈ Fin)
9335eqcomd 2734 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Scalar‘𝑌) = 𝑅)
9493fveq2d 6895 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) = (0g𝑅))
9594oveq2d 7430 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) = (𝑋 supp (0g𝑅)))
96 ssid 4000 . . . . . . . . . 10 (𝑋 supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅))
9795, 96eqsstrdi 4032 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) ⊆ (𝑋 supp (0g𝑅)))
98 fvexd 6906 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) ∈ V)
995, 97, 83, 98suppssr 8194 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑋𝑏) = (0g‘(Scalar‘𝑌)))
10099oveq1d 7429 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)))
101 eldifi 4122 . . . . . . . 8 (𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅))) → 𝑏𝐼)
102101, 30sylan2 592 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
10332adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → 𝑌 ∈ LMod)
104101, 18sylan2 592 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑈𝑏) ∈ 𝐵)
105 eqid 2728 . . . . . . . . 9 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1063, 39, 19, 105, 82lmod0vs 20771 . . . . . . . 8 ((𝑌 ∈ LMod ∧ (𝑈𝑏) ∈ 𝐵) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
107103, 104, 106syl2anc 583 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
108100, 102, 1073eqtr3d 2776 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (0g𝑌))
109108, 83suppss2 8199 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))
110 suppssfifsupp 9397 . . . . 5 ((((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V ∧ Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∧ (0g𝑌) ∈ V) ∧ ((𝑋 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
11186, 88, 89, 92, 109, 110syl32anc 1376 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
1121, 3, 82, 83, 83, 84, 43, 111frlmgsum 21699 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
11381, 112eqtr4d 2771 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
1145feqmptd 6961 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑏𝐼 ↦ (𝑋𝑏)))
11517feqmptd 6961 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈 = (𝑏𝐼 ↦ (𝑈𝑏)))
11683, 14, 18, 114, 115offval2 7699 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋f · 𝑈) = (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))))
11730mpteq2dva 5242 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
118116, 117eqtrd 2768 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋f · 𝑈) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
119118oveq2d 7430 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑋f · 𝑈)) = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
120113, 119eqtr4d 2771 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋f · 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2936  Vcvv 3470  cdif 3942  wss 3945  {csn 4624   class class class wbr 5142  cmpt 5225   × cxp 5670  Fun wfun 6536  wf 6538  cfv 6542  (class class class)co 7414  f cof 7677   supp csupp 8159  Fincfn 8957   finSupp cfsupp 9379  Basecbs 17173  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17414   Σg cgsu 17415  Mndcmnd 18687  1rcur 20114  Ringcrg 20166  LModclmod 20736   freeLMod cfrlm 21673   unitVec cuvc 21709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-gsum 17417  df-prds 17422  df-pws 17424  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-subg 19071  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-subrg 20501  df-lmod 20738  df-lss 20809  df-sra 21051  df-rgmod 21052  df-dsmm 21659  df-frlm 21674  df-uvc 21710
This theorem is referenced by:  frlmsslsp  21723
  Copyright terms: Public domain W3C validator
OSZAR »