MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco2 Structured version   Visualization version   GIF version

Theorem fvco2 6998
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
fvco2 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))

Proof of Theorem fvco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 6258 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 fnsnfv 6980 . . . . . 6 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
32imaeq2d 6066 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐺𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
41, 3eqtr4id 2786 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺𝑋)}))
54eleq2d 2814 . . 3 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
65iotabidv 6535 . 2 ((𝐺 Fn 𝐴𝑋𝐴) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)})))
7 dffv3 6896 . 2 ((𝐹𝐺)‘𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋}))
8 dffv3 6896 . 2 (𝐹‘(𝐺𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺𝑋)}))
96, 7, 83eqtr4g 2792 1 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {csn 4630  cima 5683  ccom 5684  cio 6501   Fn wfn 6546  cfv 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-fv 6559
This theorem is referenced by:  fvco  6999  fvco3  7000  fvco4i  7002  fvcofneq  7106  ofco  7712  curry1  8113  curry2  8116  fsplitfpar  8127  enfixsn  9110  updjudhcoinlf  9961  updjudhcoinrg  9962  updjud  9963  smobeth  10615  fpwwe  10675  addpqnq  10967  mulpqnq  10970  revco  14823  ccatco  14824  cshco  14825  swrdco  14826  isoval  17753  prdsidlem  18731  gsumwmhm  18802  prdsinvlem  19010  ghmquskerco  19240  gsmsymgrfixlem1  19387  f1omvdconj  19406  pmtrfinv  19421  symggen  19430  symgtrinv  19432  pmtr3ncomlem1  19433  prdsmgp  20096  ringidval  20128  lmhmco  20933  chrrhm  21466  cofipsgn  21530  dsmmbas2  21676  dsmm0cl  21679  frlmbas  21694  frlmup3  21739  frlmup4  21740  f1lindf  21761  lindfmm  21766  evlslem1  22033  evlsvar  22041  m1detdiag  22517  1stccnp  23384  prdstopn  23550  xpstopnlem2  23733  uniioombllem6  25535  precsexlem1  28123  precsexlem2  28124  precsexlem3  28125  precsexlem4  28126  precsexlem5  28127  ex-fpar  30290  0vfval  30434  cnre2csqlem  33516  mblfinlem2  37136  rabren3dioph  42238  hausgraph  42636  stoweidlem59  45449  afvco2  46558  gricushgr  47234  ackvalsucsucval  47812
  Copyright terms: Public domain W3C validator
OSZAR »