MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptdv2 Structured version   Visualization version   GIF version

Theorem fvmptdv2 7017
Description: Alternate deduction version of fvmpt 6999, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdv2.1 (𝜑𝐴𝐷)
fvmptdv2.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptdv2.3 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
fvmptdv2 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptdv2
StepHypRef Expression
1 eqidd 2729 . . 3 (𝜑 → (𝑥𝐷𝐵) = (𝑥𝐷𝐵))
2 fvmptdv2.3 . . 3 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
3 fvmptdv2.1 . . 3 (𝜑𝐴𝐷)
43elexd 3491 . . . . 5 (𝜑𝐴 ∈ V)
5 isset 3483 . . . . 5 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
64, 5sylib 217 . . . 4 (𝜑 → ∃𝑥 𝑥 = 𝐴)
7 fvmptdv2.2 . . . . . 6 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
87elexd 3491 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
92, 8eqeltrrd 2830 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 ∈ V)
106, 9exlimddv 1931 . . 3 (𝜑𝐶 ∈ V)
111, 2, 3, 10fvmptd 7006 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
12 fveq1 6890 . . 3 (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
1312eqeq1d 2730 . 2 (𝐹 = (𝑥𝐷𝐵) → ((𝐹𝐴) = 𝐶 ↔ ((𝑥𝐷𝐵)‘𝐴) = 𝐶))
1411, 13syl5ibrcom 246 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wex 1774  wcel 2099  Vcvv 3470  cmpt 5225  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by:  curf12  18212  curf2  18214  yonedalem4b  18261
  Copyright terms: Public domain W3C validator
OSZAR »