MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtresfn Structured version   Visualization version   GIF version

Theorem fvtresfn 7010
Description: Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fvtresfn.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
fvtresfn (𝑋𝐵 → (𝐹𝑋) = (𝑋𝑉))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fvtresfn
StepHypRef Expression
1 resexg 6034 . 2 (𝑋𝐵 → (𝑋𝑉) ∈ V)
2 reseq1 5981 . . 3 (𝑥 = 𝑋 → (𝑥𝑉) = (𝑋𝑉))
3 fvtresfn.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
42, 3fvmptg 7006 . 2 ((𝑋𝐵 ∧ (𝑋𝑉) ∈ V) → (𝐹𝑋) = (𝑋𝑉))
51, 4mpdan 685 1 (𝑋𝐵 → (𝐹𝑋) = (𝑋𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3471  cmpt 5233  cres 5682  cfv 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-res 5692  df-iota 6503  df-fun 6553  df-fv 6559
This theorem is referenced by:  symgfixf1  19397  symgfixfo  19399  pwssplit1  20949  pwssplit2  20950  pwssplit3  20951  eulerpartgbij  33997  pwssplit4  42516
  Copyright terms: Public domain W3C validator
OSZAR »