![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpolid | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpoidval.1 | ⊢ 𝑋 = ran 𝐺 |
grpoidval.2 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
grpolid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpoidval.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | grpoidval.2 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | grpoidinv2 30319 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
4 | 3 | simplld 767 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 ran crn 5674 ‘cfv 6543 (class class class)co 7415 GrpOpcgr 30293 GIdcgi 30294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-riota 7371 df-ov 7418 df-grpo 30297 df-gid 30298 |
This theorem is referenced by: grpoid 30324 grpoinvid1 30332 grpoinvid2 30333 grpolcan 30334 grpoinvop 30337 ablonncan 30360 vcm 30380 nv0lid 30440 hhssabloilem 31065 grpoeqdivid 37349 ghomidOLD 37357 rngo0lid 37389 rngolz 37390 rngorz 37391 keridl 37500 |
Copyright terms: Public domain | W3C validator |