MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grponpcan Structured version   Visualization version   GIF version

Theorem grponpcan 30373
Description: Cancellation law for group division. (npcan 11507 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grponpcan ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)

Proof of Theorem grponpcan
StepHypRef Expression
1 grpdivf.1 . . . 4 𝑋 = ran 𝐺
2 eqid 2728 . . . 4 (inv‘𝐺) = (inv‘𝐺)
3 grpdivf.3 . . . 4 𝐷 = ( /𝑔𝐺)
41, 2, 3grpodivval 30365 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
54oveq1d 7441 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵))
6 simp1 1133 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ GrpOp)
7 simp2 1134 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
81, 2grpoinvcl 30354 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋)
983adant2 1128 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋)
10 simp3 1135 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
111grpoass 30333 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)))
126, 7, 9, 10, 11syl13anc 1369 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)))
13 eqid 2728 . . . . . . 7 (GId‘𝐺) = (GId‘𝐺)
141, 13, 2grpolinv 30356 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (((inv‘𝐺)‘𝐵)𝐺𝐵) = (GId‘𝐺))
1514oveq2d 7442 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = (𝐴𝐺(GId‘𝐺)))
16153adant2 1128 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = (𝐴𝐺(GId‘𝐺)))
171, 13grporid 30347 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴)
18173adant3 1129 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴)
1916, 18eqtrd 2768 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = 𝐴)
2012, 19eqtrd 2768 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = 𝐴)
215, 20eqtrd 2768 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  ran crn 5683  cfv 6553  (class class class)co 7426  GrpOpcgr 30319  GIdcgi 30320  invcgn 30321   /𝑔 cgs 30322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-grpo 30323  df-gid 30324  df-ginv 30325  df-gdiv 30326
This theorem is referenced by:  grpoeqdivid  37387  ghomdiv  37398
  Copyright terms: Public domain W3C validator
OSZAR »