MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinvd Structured version   Visualization version   GIF version

Theorem grprinvd 18959
Description: The right inverse of a group element. Deduction associated with grprinv 18954. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grplinvd.b 𝐵 = (Base‘𝐺)
grplinvd.p + = (+g𝐺)
grplinvd.u 0 = (0g𝐺)
grplinvd.n 𝑁 = (invg𝐺)
grplinvd.g (𝜑𝐺 ∈ Grp)
grplinvd.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grprinvd (𝜑 → (𝑋 + (𝑁𝑋)) = 0 )

Proof of Theorem grprinvd
StepHypRef Expression
1 grplinvd.g . 2 (𝜑𝐺 ∈ Grp)
2 grplinvd.1 . 2 (𝜑𝑋𝐵)
3 grplinvd.b . . 3 𝐵 = (Base‘𝐺)
4 grplinvd.p . . 3 + = (+g𝐺)
5 grplinvd.u . . 3 0 = (0g𝐺)
6 grplinvd.n . . 3 𝑁 = (invg𝐺)
73, 4, 5, 6grprinv 18954 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
81, 2, 7syl2anc 582 1 (𝜑 → (𝑋 + (𝑁𝑋)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  0gc0g 17428  Grpcgrp 18897  invgcminusg 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-riota 7382  df-ov 7429  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901
This theorem is referenced by:  conjnmz  19213  rngmneg1  20114
  Copyright terms: Public domain W3C validator
OSZAR »