![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grprinvd | Structured version Visualization version GIF version |
Description: The right inverse of a group element. Deduction associated with grprinv 18954. (Contributed by SN, 29-Jan-2025.) |
Ref | Expression |
---|---|
grplinvd.b | ⊢ 𝐵 = (Base‘𝐺) |
grplinvd.p | ⊢ + = (+g‘𝐺) |
grplinvd.u | ⊢ 0 = (0g‘𝐺) |
grplinvd.n | ⊢ 𝑁 = (invg‘𝐺) |
grplinvd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grplinvd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
grprinvd | ⊢ (𝜑 → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplinvd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grplinvd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grplinvd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | grplinvd.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | grplinvd.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
6 | grplinvd.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
7 | 3, 4, 5, 6 | grprinv 18954 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
8 | 1, 2, 7 | syl2anc 582 | 1 ⊢ (𝜑 → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 0gc0g 17428 Grpcgrp 18897 invgcminusg 18898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-riota 7382 df-ov 7429 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 |
This theorem is referenced by: conjnmz 19213 rngmneg1 20114 |
Copyright terms: Public domain | W3C validator |