MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubid1 Structured version   Visualization version   GIF version

Theorem grpsubid1 18981
Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubid1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)

Proof of Theorem grpsubid1
StepHypRef Expression
1 id 22 . . 3 (𝑋𝐵𝑋𝐵)
2 grpsubid.b . . . 4 𝐵 = (Base‘𝐺)
3 grpsubid.o . . . 4 0 = (0g𝐺)
42, 3grpidcl 18922 . . 3 (𝐺 ∈ Grp → 0𝐵)
5 eqid 2728 . . . 4 (+g𝐺) = (+g𝐺)
6 eqid 2728 . . . 4 (invg𝐺) = (invg𝐺)
7 grpsubid.m . . . 4 = (-g𝐺)
82, 5, 6, 7grpsubval 18942 . . 3 ((𝑋𝐵0𝐵) → (𝑋 0 ) = (𝑋(+g𝐺)((invg𝐺)‘ 0 )))
91, 4, 8syl2anr 596 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = (𝑋(+g𝐺)((invg𝐺)‘ 0 )))
103, 6grpinvid 18956 . . . 4 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
1110adantr 480 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘ 0 ) = 0 )
1211oveq2d 7436 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)((invg𝐺)‘ 0 )) = (𝑋(+g𝐺) 0 ))
132, 5, 3grprid 18925 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺) 0 ) = 𝑋)
149, 12, 133eqtrd 2772 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  0gc0g 17421  Grpcgrp 18890  invgcminusg 18891  -gcsg 18892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-minusg 18894  df-sbg 18895
This theorem is referenced by:  odmod  19501  sylow3lem1  19582  telgsums  19948  dprdfeq0  19979  rngqiprngimf1lem  21184  chp0mat  22761  tsmsxplem1  24070  tngnm  24581  ply1divex  26085  ply1remlem  26112  fracfld  33007  r1pid2  33279  irredminply  33384  qqhcn  33592  lcfrlem33  41048
  Copyright terms: Public domain W3C validator
OSZAR »