MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruwun Structured version   Visualization version   GIF version

Theorem gruwun 10844
Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
gruwun ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni)

Proof of Theorem gruwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grutr 10824 . . 3 (𝑈 ∈ Univ → Tr 𝑈)
21adantr 479 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Tr 𝑈)
3 simpr 483 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ≠ ∅)
4 gruuni 10831 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝑥𝑈)
54adantlr 713 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝑥𝑈)
6 grupw 10826 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
76adantlr 713 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
8 grupr 10828 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑥𝑈𝑦𝑈) → {𝑥, 𝑦} ∈ 𝑈)
98ad4ant134 1171 . . . . 5 ((((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) ∧ 𝑦𝑈) → {𝑥, 𝑦} ∈ 𝑈)
109ralrimiva 3143 . . . 4 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)
115, 7, 103jca 1125 . . 3 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ 𝑥𝑈) → ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
1211ralrimiva 3143 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
13 iswun 10735 . . 3 (𝑈 ∈ Univ → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
1413adantr 479 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
152, 3, 12, 14mpbir3and 1339 1 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑈 ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2098  wne 2937  wral 3058  c0 4326  𝒫 cpw 4606  {cpr 4634   cuni 4912  Tr wtr 5269  WUnicwun 10731  Univcgru 10821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8853  df-wun 10733  df-gru 10822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »