![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1val2 | Structured version Visualization version GIF version |
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.) |
Ref | Expression |
---|---|
hdmap1val2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1val2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1val2.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1val2.s | ⊢ − = (-g‘𝑈) |
hdmap1val2.o | ⊢ 0 = (0g‘𝑈) |
hdmap1val2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1val2.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1val2.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1val2.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1val2.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1val2.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1val2.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1val2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1val2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hdmap1val2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1val2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
hdmap1val2 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1val2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1val2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1val2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1val2.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | hdmap1val2.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | hdmap1val2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmap1val2.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1val2.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hdmap1val2.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | eqid 2728 | . . 3 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
11 | hdmap1val2.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
12 | hdmap1val2.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | hdmap1val2.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
14 | hdmap1val2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hdmap1val2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
16 | hdmap1val2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | hdmap1val2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
18 | 17 | eldifad 3961 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18 | hdmap1val 41303 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))))) |
20 | eldifsni 4798 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
21 | 20 | neneqd 2942 | . . 3 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → ¬ 𝑌 = 0 ) |
22 | iffalse 4541 | . . 3 ⊢ (¬ 𝑌 = 0 → if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) | |
23 | 17, 21, 22 | 3syl 18 | . 2 ⊢ (𝜑 → if(𝑌 = 0 , (0g‘𝐶), (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
24 | 19, 23 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3946 ifcif 4532 {csn 4632 〈cotp 4640 ‘cfv 6553 ℩crio 7381 (class class class)co 7426 Basecbs 17187 0gc0g 17428 -gcsg 18899 LSpanclspn 20862 HLchlt 38854 LHypclh 39489 DVecHcdvh 40583 LCDualclcd 41091 mapdcmpd 41129 HDMap1chdma1 41296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-ot 4641 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-1st 7999 df-2nd 8000 df-hdmap1 41298 |
This theorem is referenced by: hdmap1eq 41306 |
Copyright terms: Public domain | W3C validator |