![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ho2times | Structured version Visualization version GIF version |
Description: Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ho2times | ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12305 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7426 | . . 3 ⊢ (2 ·op 𝑇) = ((1 + 1) ·op 𝑇) |
3 | ax-1cn 11196 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | hoadddir 31658 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
5 | 3, 3, 4 | mp3an12 1447 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
6 | 2, 5 | eqtrid 2777 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
7 | hoadddi 31657 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
8 | 3, 7 | mp3an1 1444 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
9 | 8 | anidms 565 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
10 | hoaddcl 31612 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑇 +op 𝑇): ℋ⟶ ℋ) | |
11 | 10 | anidms 565 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 +op 𝑇): ℋ⟶ ℋ) |
12 | homullid 31654 | . . 3 ⊢ ((𝑇 +op 𝑇): ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) |
14 | 6, 9, 13 | 3eqtr2d 2771 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⟶wf 6539 (class class class)co 7416 ℂcc 11136 1c1 11139 + caddc 11141 2c2 12297 ℋchba 30773 +op chos 30792 ·op chot 30793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-1cn 11196 ax-addcl 11198 ax-hilex 30853 ax-hfvadd 30854 ax-hfvmul 30859 ax-hvmulid 30860 ax-hvdistr1 30862 ax-hvdistr2 30863 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-map 8845 df-2 12305 df-hosum 31584 df-homul 31585 |
This theorem is referenced by: opsqrlem6 31999 |
Copyright terms: Public domain | W3C validator |