![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissre | Structured version Visualization version GIF version |
Description: The projection of a half-open interval onto a single dimension is a subset of ℝ. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoissre.1 | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoissre | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoissre.1 | . . . 4 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐼:𝑋⟶(ℝ × ℝ)) |
3 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
4 | 2, 3 | fvovco 44694 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) |
5 | 1 | ffvelcdmda 7093 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) ∈ (ℝ × ℝ)) |
6 | xp1st 8026 | . . . 4 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) |
8 | xp2nd 8027 | . . . . 5 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) | |
9 | 5, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) |
10 | 9 | rexrd 11296 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ*) |
11 | icossre 13440 | . . 3 ⊢ (((1st ‘(𝐼‘𝑘)) ∈ ℝ ∧ (2nd ‘(𝐼‘𝑘)) ∈ ℝ*) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) ⊆ ℝ) | |
12 | 7, 10, 11 | syl2anc 582 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) ⊆ ℝ) |
13 | 4, 12 | eqsstrd 4015 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3944 × cxp 5676 ∘ ccom 5682 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 1st c1st 7992 2nd c2nd 7993 ℝcr 11139 ℝ*cxr 11279 [,)cico 13361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-ico 13365 |
This theorem is referenced by: hoissrrn 46064 |
Copyright terms: Public domain | W3C validator |