MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idafval Structured version   Visualization version   GIF version

Theorem idafval 18045
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
Assertion
Ref Expression
idafval (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Distinct variable groups:   𝑥, 1   𝑥,𝐵   𝑥,𝐶   𝑥,𝐼   𝜑,𝑥

Proof of Theorem idafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . 2 𝐼 = (Ida𝐶)
2 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6897 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 idafval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2786 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6897 . . . . . . . 8 (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶))
7 idafval.1 . . . . . . . 8 1 = (Id‘𝐶)
86, 7eqtr4di 2786 . . . . . . 7 (𝑐 = 𝐶 → (Id‘𝑐) = 1 )
98fveq1d 6899 . . . . . 6 (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
109oteq3d 4888 . . . . 5 (𝑐 = 𝐶 → ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩ = ⟨𝑥, 𝑥, ( 1𝑥)⟩)
115, 10mpteq12dv 5239 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
12 df-ida 18043 . . . 4 Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
1311, 12, 4mptfvmpt 7240 . . 3 (𝐶 ∈ Cat → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
142, 13syl 17 . 2 (𝜑 → (Ida𝐶) = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
151, 14eqtrid 2780 1 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cotp 4637  cmpt 5231  cfv 6548  Basecbs 17179  Catccat 17643  Idccid 17644  Idacida 18041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ida 18043
This theorem is referenced by:  idaval  18046  idaf  18051
  Copyright terms: Public domain W3C validator
OSZAR »