MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22908
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22907. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22909 and indistps2ALT 22911 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5301 . . . 4 ∅ ∈ V
4 fvex 6904 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2826 . . . 4 𝐴 ∈ V
63, 5unipr 4920 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4149 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4386 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2761 . 2 𝐴 = {∅, 𝐴}
10 indistop 22898 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22837 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3470  cun 3943  c0 4318  {cpr 4626   cuni 4903  cfv 6542  Basecbs 17173  TopOpenctopn 17396  TopSpctps 22827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-top 22789  df-topon 22806  df-topsp 22828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »