Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval2 Structured version   Visualization version   GIF version

Theorem indval2 33689
Description: Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))

Proof of Theorem indval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfmpt3 6683 . . . 4 (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)})
2 indval 33688 . . . 4 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 undif 4477 . . . . . . 7 (𝐴𝑂 ↔ (𝐴 ∪ (𝑂𝐴)) = 𝑂)
43biimpi 215 . . . . . 6 (𝐴𝑂 → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
54adantl 480 . . . . 5 ((𝑂𝑉𝐴𝑂) → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
65iuneq1d 5018 . . . 4 ((𝑂𝑉𝐴𝑂) → 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)}))
71, 2, 63eqtr4a 2791 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}))
8 iunxun 5092 . . 3 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}))
97, 8eqtrdi 2781 . 2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})))
10 iftrue 4530 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 1, 0) = 1)
1110sneqd 4636 . . . . . 6 (𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {1})
1211xpeq2d 5702 . . . . 5 (𝑥𝐴 → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {1}))
1312iuneq2i 5012 . . . 4 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝐴 ({𝑥} × {1})
14 iunxpconst 5744 . . . 4 𝑥𝐴 ({𝑥} × {1}) = (𝐴 × {1})
1513, 14eqtri 2753 . . 3 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = (𝐴 × {1})
16 eldifn 4120 . . . . . . 7 (𝑥 ∈ (𝑂𝐴) → ¬ 𝑥𝐴)
17 iffalse 4533 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 1, 0) = 0)
1817sneqd 4636 . . . . . . 7 𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {0})
1916, 18syl 17 . . . . . 6 (𝑥 ∈ (𝑂𝐴) → {if(𝑥𝐴, 1, 0)} = {0})
2019xpeq2d 5702 . . . . 5 (𝑥 ∈ (𝑂𝐴) → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {0}))
2120iuneq2i 5012 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥 ∈ (𝑂𝐴)({𝑥} × {0})
22 iunxpconst 5744 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {0}) = ((𝑂𝐴) × {0})
2321, 22eqtri 2753 . . 3 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = ((𝑂𝐴) × {0})
2415, 23uneq12i 4154 . 2 ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0}))
259, 24eqtrdi 2781 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  cdif 3937  cun 3938  wss 3940  ifcif 4524  {csn 4624   ciun 4991  cmpt 5226   × cxp 5670  cfv 6542  0cc0 11136  1c1 11137  𝟭cind 33685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ind 33686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »