![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inelpisys | Structured version Visualization version GIF version |
Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.) |
Ref | Expression |
---|---|
ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
Ref | Expression |
---|---|
inelpisys | ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intprg 4984 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
2 | 1 | 3adant1 1128 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
3 | inteq 4952 | . . . 4 ⊢ (𝑥 = {𝐴, 𝐵} → ∩ 𝑥 = ∩ {𝐴, 𝐵}) | |
4 | 3 | eleq1d 2814 | . . 3 ⊢ (𝑥 = {𝐴, 𝐵} → (∩ 𝑥 ∈ 𝑆 ↔ ∩ {𝐴, 𝐵} ∈ 𝑆)) |
5 | ispisys.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
6 | 5 | ispisys2 33772 | . . . . 5 ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆)) |
7 | 6 | simprbi 496 | . . . 4 ⊢ (𝑆 ∈ 𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
8 | 7 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
9 | prelpwi 5449 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) | |
10 | 9 | 3adant1 1128 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) |
11 | prfi 9346 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ Fin) |
13 | 10, 12 | elind 4194 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin)) |
14 | prnzg 4783 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → {𝐴, 𝐵} ≠ ∅) | |
15 | 14 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ≠ ∅) |
16 | 15 | neneqd 2942 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} = ∅) |
17 | elsni 4646 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅) | |
18 | 16, 17 | nsyl 140 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} ∈ {∅}) |
19 | 13, 18 | eldifd 3958 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) |
20 | 4, 8, 19 | rspcdva 3610 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} ∈ 𝑆) |
21 | 2, 20 | eqeltrrd 2830 | 1 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 {crab 3429 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∅c0 4323 𝒫 cpw 4603 {csn 4629 {cpr 4631 ∩ cint 4949 ‘cfv 6548 Fincfn 8963 ficfi 9433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-om 7871 df-1o 8486 df-en 8964 df-fin 8967 df-fi 9434 |
This theorem is referenced by: ldgenpisyslem3 33784 |
Copyright terms: Public domain | W3C validator |