![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > initoval | Structured version Visualization version GIF version |
Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
initoval.b | ⊢ 𝐵 = (Base‘𝐶) |
initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
initoval | ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inito 17972 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
2 | fveq2 6897 | . . . 4 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
3 | initoval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 2, 3 | eqtr4di 2786 | . . 3 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | fveq2 6897 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
6 | initoval.h | . . . . . . . 8 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | 5, 6 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
8 | 7 | oveqd 7437 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑎(Hom ‘𝑐)𝑏) = (𝑎𝐻𝑏)) |
9 | 8 | eleq2d 2815 | . . . . 5 ⊢ (𝑐 = 𝐶 → (ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ℎ ∈ (𝑎𝐻𝑏))) |
10 | 9 | eubidv 2576 | . . . 4 ⊢ (𝑐 = 𝐶 → (∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) |
11 | 4, 10 | raleqbidv 3339 | . . 3 ⊢ (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) |
12 | 4, 11 | rabeqbidv 3446 | . 2 ⊢ (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)} = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
13 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
14 | 3 | fvexi 6911 | . . . 4 ⊢ 𝐵 ∈ V |
15 | 14 | rabex 5334 | . . 3 ⊢ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V) |
17 | 1, 12, 13, 16 | fvmptd3 7028 | 1 ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∃!weu 2558 ∀wral 3058 {crab 3429 Vcvv 3471 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 Hom chom 17243 Catccat 17643 InitOcinito 17969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-inito 17972 |
This theorem is referenced by: isinito 17984 isinitoi 17987 dftermo2 17992 |
Copyright terms: Public domain | W3C validator |