MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoval Structured version   Visualization version   GIF version

Theorem initoval 17981
Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c (𝜑𝐶 ∈ Cat)
initoval.b 𝐵 = (Base‘𝐶)
initoval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
initoval (𝜑 → (InitO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
Distinct variable groups:   𝑎,𝑏,   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏,
Allowed substitution hints:   𝜑(,𝑎,𝑏)   𝐵()   𝐻(,𝑎,𝑏)

Proof of Theorem initoval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-inito 17972 . 2 InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)})
2 fveq2 6897 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 initoval.b . . . 4 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2786 . . 3 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fveq2 6897 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
6 initoval.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
75, 6eqtr4di 2786 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
87oveqd 7437 . . . . . 6 (𝑐 = 𝐶 → (𝑎(Hom ‘𝑐)𝑏) = (𝑎𝐻𝑏))
98eleq2d 2815 . . . . 5 (𝑐 = 𝐶 → ( ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∈ (𝑎𝐻𝑏)))
109eubidv 2576 . . . 4 (𝑐 = 𝐶 → (∃! ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∃! ∈ (𝑎𝐻𝑏)))
114, 10raleqbidv 3339 . . 3 (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)))
124, 11rabeqbidv 3446 . 2 (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)} = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
13 initoval.c . 2 (𝜑𝐶 ∈ Cat)
143fvexi 6911 . . . 4 𝐵 ∈ V
1514rabex 5334 . . 3 {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)} ∈ V
1615a1i 11 . 2 (𝜑 → {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)} ∈ V)
171, 12, 13, 16fvmptd3 7028 1 (𝜑 → (InitO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  ∃!weu 2558  wral 3058  {crab 3429  Vcvv 3471  cfv 6548  (class class class)co 7420  Basecbs 17179  Hom chom 17243  Catccat 17643  InitOcinito 17969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-inito 17972
This theorem is referenced by:  isinito  17984  isinitoi  17987  dftermo2  17992
  Copyright terms: Public domain W3C validator
OSZAR »