MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioomax Structured version   Visualization version   GIF version

Theorem ioomax 13432
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioomax (-∞(,)+∞) = ℝ

Proof of Theorem ioomax
StepHypRef Expression
1 mnfxr 11302 . . 3 -∞ ∈ ℝ*
2 pnfxr 11299 . . 3 +∞ ∈ ℝ*
3 iooval2 13390 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)})
41, 2, 3mp2an 691 . 2 (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
5 rabid2 3461 . . 3 (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥𝑥 < +∞))
6 mnflt 13136 . . . 4 (𝑥 ∈ ℝ → -∞ < 𝑥)
7 ltpnf 13133 . . . 4 (𝑥 ∈ ℝ → 𝑥 < +∞)
86, 7jca 511 . . 3 (𝑥 ∈ ℝ → (-∞ < 𝑥𝑥 < +∞))
95, 8mprgbir 3065 . 2 ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
104, 9eqtr4i 2759 1 (-∞(,)+∞) = ℝ
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  {crab 3429   class class class wbr 5148  (class class class)co 7420  cr 11138  +∞cpnf 11276  -∞cmnf 11277  *cxr 11278   < clt 11279  (,)cioo 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-pre-lttri 11213  ax-pre-lttrn 11214
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-ioo 13361
This theorem is referenced by:  unirnioo  13459  resup  13865  reordt  23135  icopnfcld  24697  iocmnfcld  24698  blssioo  24724  reconnlem1  24755  ioombl1  25504  ioombl  25507  mbfdm  25568  ismbf  25570  ismbf2d  25582  ismbf3d  25596  tpr2rico  33513  esumcvgsum  33707  itgexpif  34238  retopsconn  34859  asindmre  37176  itgsubsticclem  45363
  Copyright terms: Public domain W3C validator
OSZAR »